+/92 106 # DELINEATION OF THE GLAZE SEAM IN WEST WALL OF FORMER GLAZE BASIN LENOX CHINA, POMONA, NEW JERSEY EPA ID. NO. NJD 002 325 074 4/92 CA92 - April 1992 Prepared for Lenox China Pomona, New Jersey Prepared by Geraghty & Miller, Inc. 201 West Passaic Street Rochelle Park, New Jersey 07662 (201) 909-0700 # DELINEATION OF THE GLAZE SEAM IN WEST WALL OF FORMER GLAZE BASIN LENOX CHINA, POMONA, NEW JERSEY EPA ID. NO. NJD 002 325 074 April 6, 1992 Geraghty & Miller, Inc. is submitting this report to Lenox China for work performed at the Pomona, New Jersey site. The report was prepared in conformance with Geraghty & Miller's strict quality assurance/quality control procedure to ensure that the report meets the highest standards in terms of the methods used and the information presented. If you have any questions or comments concerning this report, please contact one of the individuals listed below. Respectfully submitted, GERAGHTY & MILLER, INC. Jorge Gomez Staff Scientist Catherine L. Eby Senior Scientist/Project Manager Bruce S. McClellan Project Director/Project Officer JG:rma:cmw # **CONTENTS** | <u>P</u> 2 | age | |--|------| | INTRODUCTION | 1 | | BACKGROUND | 1 | | INVESTIGATION METHODOLOGY | 2 | | SOIL BORINGS | | | LABORATORY RESULTS | 3 | | GROUND-WATER QUALITY | 4 | | CONCLUSIONS | 4 | | REFERENCE | 6 | | <u>TABLES</u> | | | 1. Summary of Laboratory Results for the Glaze Waste and Subsoil Samples Collection May 2, 1991, Lenox China, Pomona, New Jersey. | ted | | 2. Summary of Zinc Concentrations Detected in Ground Water Samples Collected February, May, and August 1990, Lenox China, Pomona, New Jersey. | d in | | 3. Summary of Zinc Concentrations Detected in Monitoring Well MW-3 from Aug 1988 Through August 1990, Lenox China, Pomona, New Jersey. | ζust | | <u>FIGURES</u> | | | 1. Facility Map, Lenox China, Pomona, New Jersey. | | | 2. Location of Soil Borings Installed in the Area of the Glaze Seam Along the W Wall of the Former Glaze Basin, May 2, 1991, Lenox China, Pomona, New Jers | | # **APPENDICES** - A. Geologic Logs of Soil Borings. - B. Laboratory Data Sheets. # DELINEATION OF THE GLAZE SEAM IN WEST WALL OF FORMER GLAZE BASIN LENOX CHINA, POMONA, NEW JERSEY EPA ID. NO. NJD 002 325 074 #### **INTRODUCTION** Geraghty & Miller, Inc. was retained by Lenox China to conduct a soil sampling investigation in the vicinity of the west wall of the former Glaze Basin of the Pomona, New Jersey manufacturing plant. This action is part of the RCRA Facility Investigation (RFI) work plan submitted to the USEPA in July 1990. A glaze seam identified within the west wall of the former Glaze Basin was termed the "Waste Pile" and designated as a Solid Waste Management Unit (SWMU) in the RCRA Facility Assessment issued by the United States Environmental Protection Agency in July 1989. The purpose of this investigation was to evaluate the nature and extent of the glaze seam and its impact on the subsoil. #### **BACKGROUND** During excavation of the Glaze Basin in the summer of 1988, a seam of white clayey material ranging in thickness from 6 to 12 inches and approximately 15 feet long was observed by Geraghty & Miller personnel in the west wall of the former Glaze Basin (Figure 1). A sample of the seam was collected on July 22, 1988 at the time of the Glaze Basin cleanup and closure activities. As described in the Geraghty & Miller, September 1, 1988, letter report to Kenneth Siet of the New Jersey Department of Environmental Protection and Energy (NJDEPE), this sample of the seam material was analyzed to determine if the material was glaze. The sample had a total lead concentration of 110,000 milligrams per kilogram (mg/kg), which is equivalent to 11 percent of the sample mass. Although this value is less than the 35 to 40 percent concentrations previously reported for known glaze samples taken from the Glaze Basin before it was cleaned out, the 11 percent concentration indicates that this seam had a substantial glaze content. The material also had the distinctive appearance of glaze. Following the removal of all wastes from the Glaze Basin, a steel plate was installed along the west wall of the excavation to separate the clean backfill from the seam of waste. The origin of the seam became apparent after the recent discovery of a facility drawing from 1953 that shows the existence of an antecedent Glaze Basin (first Glaze Basin) with the dimensions of 70 by 70 by 4 feet deep. The first Glaze Basin partially overlaps with, and was located somewhat closer to the main plant building than, the second Glaze Basin, which was excavated and backfilled in 1988. According to plant employees, when the building was expanded in 1964 toward the first Glaze Basin, a pit was excavated adjacent to the first Glaze Basin (on the side opposite from the building), and the glaze wastes were pushed into this pit. Evidently, the seam represents remnants of the first Glaze Basin. The locations of these two Glaze Basins are shown on Figure 2. The area of the first Glaze Basin that does not coincide with the second Glaze Basin is approximately 4,900 square feet. #### **INVESTIGATION METHODOLOGY** #### **SOIL BORINGS** On May 2, 1991, five soil borings were installed at the locations proposed in the RFI work plan as shown on Figure 2. The soil borings were installed by driving a split-spoon sampler with a cat-head. The work was performed by Absecon Electric Motor Works of Absecon, New Jersey. Soil samples were collected from directly beneath the asphalt parking lot to a depth of 7 feet below ground surface (bgs). The Geraghty & Miller hydrogeologist examined the soil samples for the presence of glaze-like material. Geologic logs of the soil borings are included in Appendix A. #### **COLLECTION OF SAMPLES FOR ANALYSIS** Samples were selected for collection and analysis based on the presence of the glaze waste, a material easily distinguished from natural soils by its color and fine texture. Only one soil boring, SB-1, showed evidence of glaze waste, and two samples from this boring were collected for analysis. Soil boring SB-1 was located approximately 12 feet from the west wall of the former Glaze Basin, where the seam had initially been observed. A composite glaze waste sample was collected from the 3.5 to 5.5 feet sampling interval, specifically, from three thin layers of glaze waste at depths of 4.1, 4.7 and 5.5 feet bgs. The thin layers of glaze waste were less than 1 inch in thickness. A subsoil sample was collected for analysis from 1.0 foot below the lowermost glaze remnant, at a depth of 6.5 feet bgs. The glaze waste sample was designated as SB-1(G) and the subsoil sample was designated as SB-1(S). The samples were placed inside the laboratory-prepared sample bottles using a stainless-steel trowel. The split spoons and the stainless-steel trowel were cleaned prior to each use according to the decontamination procedures specified in the work plan, which included a detergent wash and a 10 percent nitric acid rinse. After collection of soil samples, a field equipment blank was prepared by running laboratory-supplied deionized water over the sampling equipment and collecting the water in the laboratory-supplied sample bottles. The glaze waste sample, the subsoil sample, and the equipment blank sample were placed inside a chilled cooler. The glaze waste, subsoil, and field equipment blank samples were analyzed for total lead and total zinc. Analysis of the samples was performed by Enseco East laboratory of Somerset, New Jersey, certified in the State of New Jersey. #### **LABORATORY RESULTS** The analytical results confirm that the white clay material is glaze waste, with concentrations of 82,400 mg/kg of lead and 15,600 mg/kg of zinc. The lead concentration in the subsoil sample was 255 mg/kg, and the zinc concentration in the subsoil sample was 362 mg/kg. These values are well below the proposed NJDEPE soil cleanup standards for industrial sites: 600 mg/kg for lead and 1,500 mg/kg for zinc (NJDEPE 1992). A summary of the laboratory results is presented in Table 1. The laboratory data sheets, including full Contract Laboratory Program (CLP) deliverables, are presented in Appendix B. #### **GROUND-WATER OUALITY** Geraghty & Miller reviewed the available information for lead and zinc concentrations in the ground water downgradient of the seam to evaluate the potential impact of the glaze remnants on ground-water quality. Monitoring Well MW-3 is located downgradient of the former Glaze Basin and the glaze seam. Historical data from Monitoring Well MW-3 indicate that lead has been below the 0.05 mg/L drinking water standard in 29 of 31 analyses. The only exceedences were 0.06 mg/L in July 1984 and 0.34 mg/L in October 1987. Zinc has been measured in Monitoring Well MW-3 a total of nine times between August 1988 and August 1990. Three values were above the 5 mg/L secondary drinking-water standard (6.46 mg/L in February 1990, 9.6 mg/L in May 1990, and 8.3 mg/L in August 1990). The concentrations of zinc in ground-water samples collected from all of the site NJPDES monitoring wells during February, May, and August 1990 are summarized in Table 2, and the concentrations of zinc in Monitoring Well MW-3 from August 1988 through August 1990 are summarized in Table 3. #### **CONCLUSIONS** Remnants of the first Glaze Basin wastes were observed in one of the five soil borings. This boring (SB-1) is located inside the footprint of the first Glaze Basin, approximately 12 feet due west from the waste seam observed during the 1988 excavation. The remnant glaze waste in this boring consists of thin discontinuous layers/lenses of white clayey material. It is not known whether these layers/lenses are connected to the waste seam. Based on the data available, the area of the glaze waste is approximately 15 feet
by 12 feet, but it could be somewhat greater. The material appears to be feathering out towards the plant building; it has a thickness of between 6 and 12 inches at the edge of the waste seam, occurs as layers less than 1-inch thick at Boring SB-1, and was not present at Boring SB-4. The soil directly underlying the glaze waste has not been significantly impacted by metals found in the glaze waste. The ground water in Monitoring Well MW-3, located immediately downgradient from the Glaze Basins, has not been impacted by lead in the glaze waste. It is not known why the zinc concentration in MW-3 began to increase in February 1990, since the Glaze Basin has been functionally closed since 1988. Zinc has not been detected in any other site monitoring wells above the 5 mg/L secondary drinking-water standard, indicating that elevated levels of zinc in ground water are limited to the immediate vicinity of the Glaze Basin. Given that zinc does not have a primary drinking-water standard, that the impact appears to be limited in area, and that the ground surface at the Glaze Basin is covered with asphalt, the only action proposed for this SWMU is to maintain the asphalt cover at a slope that prevents accumulation of surface water and repair any cracks that develop. This should minimize the infiltration of rain water into the soil, which, in turn, should minimize any leaching from the remnants of the glaze waste. #### **REFERENCE** New Jersey Department of Environmental Protection and Energy. 1992. Cleanup Standards for Contaminated Sites, Proposed New Rules: N.J.A.C. 7:26D, New Jersey Register, February 3, 1992. #NJ11716/Glazesea.rpt Table 1. Summary of Laboratory Results for the Glaze Waste and Subsoil Samples Collected on May 2, 1991, Lenox China, Pomona, New Jersey. | Sample ID | Sample
Matrix | Lead
(mg/kg) | Zinc
(mg/kg) | Lead
(ug/L) | Zinc
(ug/L) | |--------------------------|------------------|-----------------|-----------------|----------------|----------------| | SB-1(G) | Waste | 82,400 | 15,600 | NA | NA | | SB-1(S) | Soil | 255 | 362 | NA | NA | | Field Equipment
Blank | Water | NA | NA | 21.7 U | 15.3 B | mg/kg Milligrams per kilogram. ug/L Micrograms per liter. U Analyte was not detected at the specified detection limit. B Value between the instrument detection limit and the contract-required detection limit. NA Not applicable. All samples were analyzed by Enseco East of Somerset, New Jersey. #NJ11716/Glazesea.rpt Table 2. Summary of Zinc Concentrations Detected in Ground-Water Samples Collected in February, May, and August 1990 (in milligrams/liter), Lenox China, Pomona, New Jersey. | Monitoring Well No. | February | May | August | |---------------------|----------|-------|---------| | 1 | ND | ND | 0.02 | | 3 | 6.46 | 9.6 | 8.3 | | 4 | ND | 0.012 | ND/0.02 | | 6 | ND | 0.015 | 0.021 | | 7 | ND | ND | 0.013 | | 8 | ND | ND | 0.014 | | 9 | ND | ND | ND | | 10 | 0.047 | 0.011 | 0.021 | | | | | | NJ11716/GLAZESEA.RPT Table 3. Summary of Zinc Concentrations Detected in Monitoring Well MW-3 from August 1988 Through August 1990 (in milligrams/liter), Lenox China, Pomona, New Jersey. | Date | Concentration | |-------|---------------| | 8/88 | 2.0 | | 11/88 | 0.926 | | 2/89 | 2.7 | | 5/89 | 1.36 | | 8/89 | 3.18 | | 11/89 | 3.25 | | 2/90 | 6.46 | | 5/90 | 9.6 | | 8/90 | 8.3 | NJ11716/GLAZESEA.RPT Table 1. Summary of Laboratory Results for the Glaze Waste and Subsoil Samples Collected on May 2, 1991, Lenox China, Pomona, New Jersey. | Sample ID | Sample
Matrix | Lead
(mg/kg) | Zinc
(mg/kg) | Lead
(ug/L) | Zinc (ug/L) | |--------------------------|------------------|-----------------|-----------------|----------------|-------------| | SB-1(G) | Waste | 82,400 | 15,600 | NA | NA | | SB-1(S) | Soil | 255 | 362 | NA | NA | | Field Equipment
Blank | Water | NA | NA | 21.7 U | 15.3 B | mg/kg Milligrams per kilogram. ug/L Micrograms per liter. U Analyte was not detected at the specified detection limit. B Value between the instrument detection limit and the contract-required detection limit. NA Not applicable. All samples were analyzed by Enseco East of Somerset, New Jersey. #NJ11716/Glazesea.rpt Table 2. Summary of Zinc Concentrations Detected in Ground-Water Samples Collected in February, May, and August 1990 (in milligrams/liter), Lenox China, Pomona, New Jersey. | Monitoring
Well No. | February | May | August | |------------------------|----------|-------|---------| | 1 | ND | ND | 0.02 | | 3 | 6.46 | 9.6 | 8.3 | | 4 | ND | 0.012 | ND/0.02 | | 6 | ND | 0.015 | 0.021 | | 7 | ND | ND | 0.013 | | 8 | ND | ND | 0.014 | | 9 | ND | ND | ND | | 10 | 0.047 | 0.011 | 0.021 | NJ11716/GLAZESEA.RPT Table 3. Summary of Zinc Concentrations Detected in Monitoring Well MW-3 from August 1988 Through August 1990 (in milligrams/liter), Lenox China, Pomona, New Jersey. | Date | Concentration | |-------|---------------| | 8/88 | 2.0 | | 11/88 | 0.926 | | 2/89 | 2.7 | | 5/89 | 1.36 | | 8/89 | 3.18 | | 11/89 | 3.25 | | 2/90 | 6.46 | | 5/90 | 9.6 | | 8/90 | 8.3 | NJ11716/GLAZESEA.RPT APPENDIX A GEOLOGIC LOGS #### APPENDIX A # **GEOLOGIC LOGS** # LENOX CHINA, POMONA, NEW JERSEY | Boring
ID | Description | Depth below
ground surface
(Feet) | |--------------|---|---| | SB-1 | Asphalt | 0 - 0.3 | | | Silt, with trace of sand, fine to medium, trace of gravel, fine to coarse. Brown, soft, dry. | 0.3 - 2.0 | | | Silt, with little sand, fine to coarse, trace of gravel, coarse, less than 1-inch thick layers of glaze at 4.1, 4.7, and 5.3 feet below ground surface. | 2.0 - 5.5 | | | Sand, fine to medium, with trace of gravel, fine. Light gray, soft, wet. | 5.5 - 7.0 | | SB-2 | Asphalt | 0 - 0.3 | | | Silt, with little sand, fine to coarse, trace of gravel, medium to coarse. Brown, soft, dry. | 0.3 - 2.0 | | , | Silt, with trace of sand, fine to coarse, trace of gravel, fine. Brown to dark brown, dry, soft. | 2.0 - 3.5 | | | Silt, with little sand, fine to coarse, little gravel, fine, broken pieces of quartz. Light brown, loose, dry. | 3.5 - 5.3 | | | Sand, fine to coarse, with little silt, trace of gravel, fine. Light brown and gray, loose, wet. | 5.3 - 7.0 | # APPENDIX A # **GEOLOGIC LOGS (Continued)** # LENOX CHINA, POMONA, NEW JERSEY | Boring
ID | Description | Depth below ground surface (Feet) | |--------------|---|-----------------------------------| | | | 0.04 | | SB-3 | Asphalt | 0 - 0.4 | | | Silt, with little sand, fine to coarse, trace of gravel, fine to medium. Brown, soft, dry. At 1.1 feet below surface, 2-inch of fill: sand, silt, and pieces of wood. | 0.4 - 3.5 | | | Sand, fine to coarse with trace of silt, trace of gravel, fine. Light brown, loose, moist. | 3.5 - 5.5 | | | Sand, fine to coarse, with little silt, trace of clay. Light brown, loose, wet. | 5.5 - 7.0 | | SB-4 | Asphalt | 0 - 0.3 | | | Silt, with trace of sand, fine to medium, trace of gravel, fine to medium. Brown, soft to medium firm, dry. | 0.3 - 5.5 | | · | Silt, with little sand, fine to coarse, trace of gravel, fine. Brown medium firm, moist. | 5.5 - 7.0 | | SB-5 | Asphalt | 0 - 0.3 | | | Silt, with little sand, fine, trace of gravel, fine to coarse. Dark brown and black, medium firm, dry. | 0.3 - 2.0 | #### APPENDIX A # **GEOLOGIC LOGS (Continued)** # LENOX CHINA, POMONA, NEW JERSEY | Boring
ID | Description | Depth below ground surface (Feet) | |--------------|---|-----------------------------------| | SB-5 | Silt with little sand, fine to coarse, trace of gravel, fine to medium. Tan and brown, medium firm, dry. | 2.0 - 3.5 | | | Silt, and sand, fine to medium, trace of gravel, fine to medium, trace of clay. Light brown, soft, moist. | 3.5 - 5.5 | | | Sand, fine to coarse, with trace of gravel, fine, trace of silt. Light brown, loose, wet. | 5.5 - 7.0 | NJ11716disc/NY08226/Glazesea.rpt # APPENDIX B LABORATORY DATA SHEETS Data Package for Geraghty & Miller, Inc. Enseco-East Project No. 13637 MAY 22, 1991 Ms. Catherine L. Gilroy Geraghty & Miller, Inc. 201 West Passaic Street Rochelle Park, NJ 07662 Dear Ms. Gilroy: Enclosed are the results of the analyses performed on the two soil samples and one aqueous sample from Glaze Seam, Lenox China Site (Enseco-East Project No. 13637; Purchase Order No. LTO #11356). These samples were received under chain of custody at Enseco-East Laboratory on May 6, 1991. A brief description of the Quality Assurance/Quality Control and method references employed by Enseco is contained within the report. This letter authorizes the release of the analytical results and should be considered an integral part of this report. Please refer to this project by the Enseco-East Laboratory Project Number to help expedite any future discussions. We will be happy to answer any questions or concerns that you may have. Sincerely, ENSECO-EAST LABORATORY Don McDowe/11 Program Administrator Enc. I certify that this data package is in compliance with the terms and conditions of the analyses requested, both technically and for completeness, for other than the conditions outlined in the case narrative. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or a designated representative, as verified by the following signature. Debra White Inorganics Laboratory Director #### QUALITY ASSURANCE/QUALITY CONTROL To ensure data quality, an extensive QA/QC program has been implemented at Enseco-East which incorporates the following controls (as applicable). Reagent or analytical blanks are analyzed to assess the level of
contamination which exists in the analytical system. An analytical blank, analyzed with every batch of samples, consists of reagents specific to the method. This blank is carried through every aspect of the procedure, including preparation, cleanup, and analysis. Ideally, the concentration of an analyte in the blank is below the reporting limit for that analyte. However, some common laboratory solvents and metals are difficult to eliminate to the part-per-billion levels commonly reported in environmental analyses. <u>Duplicate Control Samples</u> (DCS) are used to monitor the laboratory's day-to-day performance of routine analytical methods. A DCS consists of a standard, control matrix which is spiked with a group of target compounds representative of the method analytes. The DCS is analyzed with environmental samples to provide evidence that the laboratory is performing the method within accepted QC guidelines. A DCS has been established for most routine analytical methods. Reagent water is used as the control matrix for the analysis of aqueous samples. The DCS compounds are spiked into reagent water and carried through the appropriate steps of the analysis. As stated in SW-846 (third edition), a universal blank matrix does not exist for solid samples and therefore no matrix is used. The DCS for solid samples consists of the appropriate steps of the analysis. The data thus obtained are used to set the DCS control limits. The control limits for accuracy are based on the historical average recovery of the DCS plus or minus three standard deviation units. The control limits for precision are based on the historical relative percent difference (RPD) and range from zero (no difference between duplicate samples) to the average RPD plus three standard deviation units. Surrogates are organic compounds that are similar to the analytes of interest in chemical behavior but which are not normally found in environmental samples. Surrogates are routinely added to samples requiring GC/MS analysis to monitor the effect of the matrix on the accuracy of the analysis. Results are reported in terms of percent recovery. #### ANALYTICAL RESULTS The method number provided on each data report sheet refers to a publication originating from a regulatory or standard-setting organization. In general, the methods employed are those specified by the U.S. Environmental Protection Agency and other state and federal agencies. In cases where an approved regulatory method does not exist, a method developed by Enseco will be employed to meet the specific needs of the client. The methods commonly employed by Enseco are based on methods from the following references. - U.S. Environmental Protection Agency. <u>Methods for Chemical Analysis of Water</u> and Wastes. EPA-600/4-79-020. Cincinnati, OH, March 1983. - U.S. Environmental Protection Agency. <u>Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.</u> (SW-846); Washington, D.C. April 1984. - U.S. Environmental Protection Agency <u>Methods for the Determination of Organic</u> <u>Compounds in Finished Drinking Water and Raw Source Water</u>. Cincinnati, OH, September 1986. Guidelines Establishing Test Procedures for the analysis of Pollutants Under the Clean Water Act, 40 CFR, Part 136; Federal Register, (1984). American Public Health Association, American Water Works Association, Water Pollution Control Federation. <u>Standard Methods for the Examination of Water and Wastewater</u>, 16th edition. Washington, D.C., April 1985. EPA <u>Contract Laboratory Program</u> (CLP) protocols for the analysis of organic and inorganic hazardous substances. II. SAMPLE DATA PACKAGE # SAMPLE DESCRIPTION INFORMATION for Geraghty & Miller, Inc | | | | Samp | led | Received | |--|-----------|---------------------------|----------|---------|-------------------------------------| | Lab ID | Client ID | Matrix | Date | Time | Date | | 013637-0001-SA
013637-0002-SA
013637-0004-FB | SB-1(S) | SOLID
SOLID
AQUEOUS | 02 MAY 9 | 1 10:10 | 03 MAY 91
03 MAY 91
03 MAY 91 | # CASE NARRATIVE <u>Case Narrative for Enseco-East Project No. 13637</u> Project No. 13637 met all performance standards ## CHAIN OF CUSTODY RECORD DOCUMENTATION | GERAGHTY | |---------------------------------------| | & MILLER, INC. Environmental Services | | Environmental Services | Laboratory Task Order No. 11356 ## **CHAIN-OF-CUSTODY RECORD** Page____ol___ol___ | Project Number | | | 6 | | / L & | ٧,٠ | SAM | IPLE BOT | TLE / CON | TAINER DE | SCRIPTION | / | | |------------------------|--------|----------------------|------------|--|----------------------|-----------|-----------|-------------|-----------|-------------------|-----------|---------------------------|----------------------------| | Project Location | Pom | ona, N | 1 | / | 12 % | | / , | | | | | / / | / / | | Laboratory Ens | e(0 | -East | | | 5 R / | | | / | / / | ′ / | | | | | Sampler(s)/Affiliation | | r. 60Mez | | E . | 1000 m/ Cad " 816/20 | | | | | | | | | | SAMPLE IDENTITY | Code | Date/Time
Sampled | Lab ID | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0,00 | | | | | | | | TOTAL | | 58-1(6) | | 5-2-91/10:10 | | 1 | | · | | • | · | <u> </u> | | | | | SB-1 (2) | S | 5-2-91/10:10 | | | | | | | <u> </u> | | | | | | Field Equip | L | 5-2-91/2:15 | | | 1 | | | | | 1 | | | | | |
 | | | | | | | · · · · · · | | | | | <u> </u> | | | | | , | | | <u></u> . | <u> </u> | | - | | | | | | | | | | | | | | | | | | | | | | | | | Full | CLP | de li | vera 3 le | 7 | | | | | | | | | | | | | | | | | - | | | | | | - | | | | | | | | | | | | | | | - | <u> </u> | <u> </u> | <u> </u> | ļ | | | Sample Code: L | = Liq | uid; S = So | lid; A = 4 | Air | | | <u></u> | | <u> </u> | | | of Bottles/
Containers | 3 | | Relinquished by: | Jog | re 6 sme 7 | | Organiza | ation: <u>6e</u> | raghtr | + niller | | Date 5 / | 2 / 91 Tir | ne4:/0 | PM | Seal Intact? | | Relinquished by: | | | | Organiza | | -5- | 18(0 | 15 V | Date_57 | - <u>37.4</u> Tir | ne | <u> </u> | Seal Intact?
Yes No N/A | | Special Instructions | s/Rema | arks: | | | | | Een | - # | | 3(,3 | 7 | | | | Delivery Method | | □ In Pers | | Common | Corrior | Federal | EYerrss | , | ☐ Lab C | Courier | ☐ Other | | | ## METALS DATA PACKAGE ## COVER PAGE - INORGANIC ANALYSES DATA PACKAGE | Lab | Name: | ENSECO | _EAST | Contract | :: | | | | |---------------|------------------|----------|--|---------------|--|----------|--------|--------| | Lab | Code: | ENSECO | Case No.: | SAS No.: | | SDG | No.: | GEM63 | | SOW | No.: | 7/87_ | | | | | | | | | · | _ | PA Sample No. FIELD EQUI FIELD EQUI FIELD EQUI SB-1(G) SB-1(G) SB-1(S) | La | ab Sample II
1363704
1363704D
1363704S
1363701D
1363701S
1363702 | ο. | | | | | | | | | | | | | | Were | ICP i | interel | ement corrections app | lied ? | | | Yes/N | lo YES | | Were | | | und corrections appli | | | | Yes/N | lo YES | | | | | re raw data generated
of background correc | | | | Yes/N | 10 NO_ | | | ents:
OILS_A | AND_WAT | ERS | | | | | | | composite the | uter-r
Labora | readable | | loppy diskett | e have been | aut | horize | | | | | | COVER | Date: | 5/21/91 | <u> </u> | | 7/87 | 000003 ## 1 INORGANIC ANALYSES DATA SHEET | | C 3 3 4 75 T 75 | | |-----|-----------------|-----| | LPA | SAMPLE | NO. | | | | INONOMITE A | MALISES DATA S | J111 | Ľl | , | | |----------------|------------------------|-------------------|-----------------|------|-------------|---------------|-------| | Lab Name: ENSI | CO EAST | | Contract: | | | SB-1(0 | 3) | | ab Code: ENSE | | | | : | | SDG No.: (| EM633 | | | • | | | | | | | | Matrix (soil/w | rater): SUIL | | | La. | o Samp | le ID: 13637 | /01 | | Level (low/med | l): LOW_ | _ | | Da | te Rec | eived: 05/03 | 3/91 | | Solids: | _67. | 7 | | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y w | eight) | : MG/KG | | | · | CAS No. | Analyte | Concentration | С | Q | м | | | | 7429-90-5 | Aluminum | | _ . | | NR | | | | 7440-36-0 | Antimony_ | | - - | | NR | | | | 7440-38-2 | Arsenic | | - | | NR | | | | 7440-39-3 | Barium | | - | | NR | | | , | 7440-41-7 | Beryllium | | - | | NR | | | | 7440-43-9 | Cadmium | | | | NR | | | | 7440-70-2 | Calcium_ | | | | NR | | | | 7440-47-3 | Chromium_ | | | | NR | | | | 7440-48-4 | Cobalt | | _ | | NR | | | | 7440-50-8 | Copper | <u> </u> | _ | | NR | | | | 7439-89-6 | Iron | | _ | | NR | | | | 7439-92-1 | Lead | 82400_ | | * | P
NR | .• | | | 7439-95-4 | Magnesium | | | | NR NR | | | | 7439-96-5
7439-97-6 | Manganese | | - | | NR NR | | | | 7440-02-0 | Mercury
Nickel | | - | | NR | | | | 7440-02-0 | Potassium | | - | | NR | | | | 7782-49-2 | Selenium | | 1-1 | | NR | | | | 7440-22-4 | Silver | | - | | NR | | | | 7440-23-5 | Sodium | | - | | NR | | | | 7440-28-0 | · — | | - | | NR | | | | 7440-62-2 | Vanadium | | - | | NR | | | | 7440-66-6 | Zinc | 15600 | - | | P | | | | | Tin | | - | | NR | | | | | l | | | | . | | | Color Before: | WHITE | Clari | ty Before: | | • | Texture: | FINE | | Color After: | COLORLESS | Clari | ty After: CLE | AR_ | | Artifacts: | | | omments: SOILS | | | | | | | | ### 1 INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|--------|-----| | | | 110 | | Lab Name: ENSE | CO_EAST | | Contract: | | | SB-1(S | 5) | |-----------------|------------------------|-----------|-----------------|---------------|----------------|--------------|-------------| | Lab Code: ENSE | ECO Ca | se No.: | SAS No. | : | | SDG No.: | GEM637 | | Matrix (soil/w | water): SOIL | _ | | Lak | Samp] | le ID: 13637 | 702 | | Level (low/med | i): LOW_ | _ | | Dat | e Rece | eived: 05/03 | 3/91
| | % Solids: | _88. | 9 | | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y we | eight): | MG/KG | | | | CAS No. | Analyte | Concentration | С | Q | м | | | | 7429-90-5 | Aluminum | | - - | -' | NR | | | | 7440-36-0 | Antimony | | - - | - | NR | | | | 7440-38-2 | Arsenic | | | | NR | | | | 7440-39-3 | Barium | | | | NR | | | | 7440-41-7 | Beryllium | | _ _ | | NR | | | | 7440-43-9 | Cadmium_ | | _ - | | NR | | | | 7440-70-2 | Calcium_ | | _ _ | | NR | | | | 7440-47-3 | Chromium_ | | _ - | | NR | | | | 7440-48-4 | Cobalt | | - - | | NR | | | | 7440-50-8 | Copper | | - | | NR
NR | | | | 7439-89-6
7439-92-1 | Iron | 255 | - - | | P P | | | | 7439-95-4 | Magnesium | | - - | ^_ | NR | | | | 7439-96-5 | Manganese | | - - | | NR | | | | 7439-97-6 | Mercury | | - - | | NR | | | | 7440-02-0 | Nickel | | - - | | NR | | | | 7440-09-7 | Potassium | | - - | | NR | | | | 7782-49-2 | Selenium | | - - | | NR | | | | 7440-22-4 | | | - - | | NR | | | | 7440-23-5 | | | - - | | NR . | | | | 7440-28-0 | Thallium | | - - | | NR | | | | 7440-62-2 | Vanadium_ | | - - | | NR | | | | 7440-66-6 | Zinc | 362 | | | P_ | | | | | Tin | | - - | | NR | | | Color Before: | WHITE | Clari | ty Before: | ' | | Texture: | FINE_ | | Color After: | COLORLESS | Clari | ty After: CLE | AR_ | | Artifacts: | | | Comments: SOILS | | | | | | | | | | | | | | | | | ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Lab Na | ame: | ENSEC | CO_EAS | r | | Contract: _ | | | FIELD EQUIP | |---------------|---------------|--------|----------------|-------|---------------------|----------------|-----|-------------|-----------------| | Lab Co | ode: | ENSEC | 0 | Cas | se No.: | SAS No. | : _ | · | SDG No.: GEM6 | | Matri | x (so | oil/wa | ater): | WATE | ર | | La | ab Samp | le ID: 1363704_ | | Level | (10 | w/med) | : | LOW | _ | | Da | ate Rec | eived: 05/03/91 | | % Sol: | ids: | | | |) | | | | | | | | Cor | ncentr | ation | Units (ug, | /L or mg/kg dr | y v | weight) | : UG/L_ | | | | | CAS N | ٥. | Analyte | Concentration | С | Q | м | | | | | 7429- | 90-5 | Aluminum | | - | | NR | | | | | 7440- | | Antimony_ | | _ | | NR | | | | | 7440- | | Arsenic | | | | NR | | | | | 7440- | | Barium | | _ | | NR | | | | | 7440- | | Beryllium | | - | | NR NR | | | | | 7440- | • | Cadmium
Calcium | | - | | NR NR | | | | | 7440- | | Chromium | | - | | NR | | | | | 7440- | | Cobalt | | - | | NR | | | | | 7440- | | Copper | | - | | NR | | | | | 7439- | 89-6 | Iron | | | | NR | | | | | 7439- | 92-1 | Lead | 21.7 | ן ע | | P_ | | | | | 7439- | | Magnesium | | _ | | NR | | | | | 7439- | | Manganese | | _ | | NR | | | | | 7439- | | Mercury | | - | | NR | | | | | 7440-
7440- | | Nickel
Potassium | | - - | | NR
NR | | | | | 7782- | | Selenium | | - | | NR | | | | | 7440- | | Silver | | - | | NR | | | | | 7440- | | Sodium | · | - | | NR | | | | | 7440- | | Thallium | | | | NR | | | | | 7440- | | Vanadium_ | | | | NR | | | | | 7440- | 66-6 | Zinc | 15.3_ | B | | P_ | | | | | | | Tin | | - | | NR | | Color | Befo | ore: | COLOR | LESS | Clari | ty Before: CLE | AR_ | | Texture: | | Color | Afte | er: | COLOR | LESS | Clari | ty After: CLE | AR | _ | Artifacts: | | Commer
WAT | nts:
rers_ | ## 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION | Lab Name: | ENSECO_EAST | | | Cont | tract |
- | | | |------------|------------------|---------|-------------|------|-------|---------|------|--------| | Lab Code: | ENSECO | Case No | o.: | SAS | No.: |
SDG | No.: | GEM637 | | Initial Ca | alibration Sour | ce: | SPEX/JT BAI | KE | | | | | | Continuin | g Calibration So | ource: | JT BAKER | | | | | | Concentration Units: ug/L | ļ | Initia | al Calibra | ation | Continuing Calibration | | | | | | | |-----------|-------------|------------|-------------|------------------------|---------|-------|---------|-------|--|--| | Analyte | True | Found | %R(1) | True | Found | ₹R(1) | Found | %R(1) | | | | Aluminum | | | | | | | | | | | | Antimony | | | | | | | | | | | | Arsenic | | | | | | | | | | | | Barium - | | | | | | | | | | | | Beryllium | | | | | | | | | | | | Cadmium | | | | | | | | | | | | Calcium | | | | | | | | | | | | Chromium | | | | | | | | | | | | Cobalt - | | | | | | | | | | | | Copper | | | | | | | | | | | | Iron | · | | | | | | | | | | | Lead | 1000.0 | 1040.67 | 104.1 | 1000.0 | 1004.92 | 100.5 | 1011.01 | 101.1 | | | | Magnesium | | _ | | | _ | | <u></u> | | | | | Manganese | | | | | | | | | | | | Mercury | | | | | | | | | | | | Nickel - | | | | | | | | | | | | Potassium | | | | | | | • | | | | | Selenium | | | | | | | | | | | | Silver | | | | | | | | | | | | Sodium | | | | | | | | | | | | Thallium | | | | | | | | | | | | Vanadium | | | | | | | | | | | | Zinc | 1000.0 | 1003.77 | 100.4 | 2000.0 | 1997.30 | 99.9 | 1981.03 | 99.1 | | | | Tin — | | | 1 | | _ | - | _ | | | | (1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115 ## 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION | Lab | Name: | ENSECO_EAST | | | Cont | tract: |
_ | | | |------|---------|---------------|-----------|-------------|------|--------|---------|------|--------| | Lab | Code: | ENSECO | Case No | o.: | SAS | No.: |
SDG | No.: | GEM637 | | Init | tial Ca | alibration So | ource: | SPEX/JT BAI | KE | | | | | | Cont | cinuing | , Calibration | n Source: | JT BAKER | | | | | | Concentration Units: ug/L | | Initial | Calibr | ation | | Continuir | ng Cali | | |------------|---------|--------|----------|--------|-----------|---------|--------| | Analyte | True | Found | %R(1) | True | Found | %R(1) | %R(1) | | Aluminum_ | | | <u> </u> | | | | | | Antimony] | | | | | | | | | Arsenic | | | | | | | | | Barium | | | | | | | | | Beryllium | | | | | | | | | Cadmium | | | | | | | | | Calcium | | | | | | | | | Chromium] | | | | | | | | | Cobalt | | | | | | |
 | | Copper | | | | | | | | | [ron | | | | | | | . | | Lead | | | | 1000.0 | 1013.75 | 101.4 | . | | [agnesium | | | | | | | . | | [anganese | | | | | | |
. | | fercury | | | | | | | . | | lickel | | | | | | |
. | | otassium | | | | | | |
. | | Selenium | | | <u> </u> | | | |
_ | | Silver | | | | | | |
_ | | odium | | | | | | |
_ | | hallium] | | | | | | l |
. | | anadium_ | | | | | | |
_ | | inc | | | | 2000.0 | 1999.01 | 100.0 |
_[| (1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115 ### 2B CRDL STANDARD FOR AA AND ICP | Lab Name: ENSECO_EAST | <u> </u> | Contract: | | |-----------------------|---------------|-----------|-----------------| | Lab Code: ENSECO | Case No.: | SAS No.: | SDG No.: GEM637 | | AA CRDL Standard Sour | cce: JT BAKER | | | | ICP CRDL Standard Sou | rce: JT BAKER | | | Concentration Units: ug/L | | CRDL St | andard fo | r AA | CRDL Standard for ICP | | | | | | | |------------|---|-----------|-------------|--|------------------|------|----------------|---|--|--| | Analyte | True | Found | *R | True | Initial
Found | %R | Fina:
Found | | | | | Aluminum | - | | | | · · · | | | 7 | | | | ntimony | | | | | | | | | | | | rsenic | | | | | | | | | | | | Barium | - | | | | | | | ļ | | | | Beryllium | | | | | | | | l | | | | Cadmium | | | | | | | | ١ | | | | Calcium | | | | | | | | l | | | | Chromium_ | | | | | | | | l | | | | Cobalt | | <u> </u> | | | | | | l | | | | Copper | | | | | | | | l | | | | Iron — | | | | | | | | l | | | | Lead | | | | | <u></u> | | | ł | | | | Magnesium | | | | | | | | 1 | | | | Manganese | | | | | | | | I | | | | Mercury | | | | | | | | ١ | | | | Nickel | | | | | | | | ļ | | | | Potassium | | | | | | | | l | | | | Selenium | | | | | | | | I | | | | Silver - | | | | | | | | l | | | | Sodium | | | | | | | | l | | | | Thallium | | | | | | | | ĺ | | | | Vanadium - | | | | | | | | ļ | | | | Zinc | - | | | 40.0 | 39.60 | 99.0 | 42.45 | l | | | ## 3 BLANKS | Lab Name: | ENSECO_EAST | r | Contract: _ | | | | |-------------|--------------|--------------------|------------------|-------|------|--------| | Lab Code: | ENSECO | Case No.: | SAS No.: | SDG | No.: | GEM637 | | Preparation | on Blank Mat | trix (soil/water): | WATER | | | | | Preparation | on Blank Cor | ncentration Units | (ug/L or mg/kg): | UG/L_ | | | | Analyte | Initial
Calib.
Blank
(ug/L) | С | | | ing Calibra
ank (ug/L)
2 | at
C | • | С | Prepa-
ration
Blank C M | |--|--------------------------------------|---|------|---|--------------------------------|--|------|---|--| | Aluminum_Antimony_Arsenic_Barium_Beryllium Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead | 21.7 | | 21.7 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 21.7 | -
-
-
-
-
-
-
-
-
- | 21.7 | | NR N | | Magnesium Manganese Mercury_ Nickel_ Potassium Selenium_ Silver_ Sodium Thallium_ Vanadium_ Zinc_ Tin_ | | | | | 6.3_ | -
-
-
-
-
-
B | 5.6_ | | NR NR NR NR NR NR NR NR | ## 3 BLANKS | Lab Name: | ENSECO_EAST_ | | Contract: | · | |-------------|---------------|-----------------|---------------------|-----------------| | Lab Code: | ENSECO | Case No.: | SAS No.: | SDG No.: GEM637 | | Preparation | on Blank Matr | ix (soil/water) | : SOIL_ | | | Preparation | on Blank Conc | entration Units | (ug/L or mg/kg): MG | /KG | | Analyte | Initial
Calib.
Blank
(ug/L) | С | Cont
1 | | ing Calib
ank (ug/L)
2 | cat
C | cion
3 | С |
Prepa-
ration
Blank C | М | |--------------------|--------------------------------------|------|-------------|----|------------------------------|----------|-------------|------|-----------------------------|-----------| | Aluminum_ | | T-1 | | _ | | _ | | | | NR_
NR | | Antimony_ | | -1-1 | | _ | | _ | | - | | NR_
NR | | Arsenic | | - - | | - | | - | | 1-1 | | NR
NR | | Barium | | - - | | - | | - | | - | | NR
NR | | Beryllium | | - - | | - | | - | | - | | NR | | Cadmium
Calcium | | -1-1 | | - | | - | | 1-1 | | NR | | Chromium | | - - | | - | | - | | - | | NR | | Cobalt | | - - | | - | | - | | - | | NR | | Copper | | - - | | - | | - | | - | | NR | | Iron | | - - | | - | | - | | 1-1 | | NR | | Lead | | - - | | - | | - | | 1-1 | | P | | Magnesium | | - - | | - | | - | | 1-1 | | NR | | Manganese | | - - | | - | | - | | 1-1 | - | NR | | Mercury | | - - | | 1- | | - | | 1-1 | | NR | | Nickel — | | - - | | | | - | | - | | NR | | Potassium | | - | | - | | - | | -1-1 | | NR | | Selenium | | -1-1 | | - | | - | | - | | NR | | Silver | | - - | | - | | _ | | | | NR | | Sodium | | - - | | - | | - | | | | NR | | Thallium | | - - | | - | | | | | | NR | | Vanadium | | - - | | - | | | | | | NR | | Zinc - | - | - - | | | | | | | | P_ | | Tin | | - - | | _ | | 1 | | | 1 11 | NR | ## ICP INTERFERENCE CHECK SAMPLE | Lab | Name: | ENSECO_EAST | | Contract: | | |-----|---------|-------------|-----------|---------------------|-----------------| | Lab | Code: | ENSECO | Case No.: | SAS No: | SDG No.: GEM637 | | ICP | ID Numb | er: TJA61 | | ICS Source: EPA(12) | 87) | Concentration Units: ug/L | | | cue | Ini | tial Found | i | | Final Found | | | | | | |-----------|-------------|-------------|------|------------|------|------|-------------|-----|--|--|--|--| | | Sol. | Sol. | Sol. | Sol. | | Sol. | Sol. | | | | | | | Analyte | A | AB | A | AB | %R | A | AB | %R | | | | | | Aluminum_ | | | | | | | T | | | | | | | Antimony_ | | | | | | | | | | | | | | Arsenic | | | | | | | | | | | | | | Barium - | | | | | | | | | | | | | | Beryllium | | | | | | | | | | | | | | Cadmium | | | | | | | | | | | | | | Calcium | | | | | | | | | | | | | | Chromium | | | | | | | | | | | | | | Cobalt - | | | | | | | | | | | | | | Copper | | | | | | | | | | | | | | Iron — | | | | | | | | | | | | | | Lead | | 1052 | | 968.5 | 92.1 | | 989.1 | 94. | | | | | | Magnesium | | | | | - | | | 1- | | | | | | Manganese | | | | | | | | | | | | | | Mercury | | | | | | | | | | | | | | Nickel - | | | | | | | | | | | | | | Potassium | | | | | | · | | | | | | | | Selenium | | | | | | | | | | | | | | Silver | | | | | | | | | | | | | | Sodium | | | | | | | | | | | | | | Thallium | | | | | | | | | | | | | | Vanadium | | | | | | | | | | | | | | Zinc | | 937 | | 890.8 | 95.1 | | 891.3 | 95 | | | | | ### 5A SPIKE SAMPLE RECOVERY | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | | _ | STCase No | | SAS No.: | | SDO | S No.: G | EM6 | |------------|------------------------|---------------------------|---------------------|-----------------------|------------|---------------------|------------------|-------------| | ib code. I | MSECO | case no | •• — | | - | | | | | atrix (soi | .l/water) | : WATER | | | | Level (lo | w/med): | LOV | | | Concent | ration Units | (ug/L | or mg/kg dry | We | eight): UG/ | L_ | | | Analyte | Control
Limit
%R | Spiked Samp
Result (SS | | Sample
Result (SR) | С | Spike
Added (SA) | %R | Q | | Aluminum | | | | | _ | | | - - | | Antimony_ | | | | | _ | | | | | Arsenic | | | _ | | _ | | | | | Barium | | | | | _ | | l | - | | Beryllium | | | _ | | _ | | | - - | | admium | | | _ | | _ | | | - - | | calcium | | | _ | | _ | | | - | | Chromium_ | | | - | | - | | | - - | | Cobalt | · · | | - | | - | | | - - | | Copper | · | | - | | - | | | - - | | Lead | 75-125 | 514.93 | 00 | 21.7000 | ប៊ | 500.0 | 103.0 | 5 - | | dagnesium | 73-123- | | /°°- - | | | | | - | | langanese | | | - | | - | | | -1- | | ercury | | | - | | - | | | | | Nickel | | | - | | _ | | | _ _ | | Potassium | - | | | | | | | _ _ | | Selenium_ | | | <u>_</u> | | _ | | | -1- | | Silver | | | _ | | _ | | ļ | - - | | Sodium | | | _ | | _ |] | | - - | | Thallium_ | | | _ | | _ | | · | - - | | /anadium_ | | | _ | 15 3400 | = | 500.0 | 94. | - - | | Zinc | 75-125_ | 485.88 | ^{,,,} ,,,, | 15.3400 | 5 | 500.0 | ³ **• | ^ - | | Tin | | | - | | - | | | - - | | | ll | | | | ı — | I | . I | -'- | | | | | | | | | | | | omments: | | | | | | | | | | WATERS | | | | | | | | | ### 5A SPIKE SAMPLE RECOVERY | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | Lab Name: I | b Name: ENSECO_EAST | | | Contract: | | SE | 3-1(G) | | ;
 | |--|---------------------|-------------------------------|------|-------------------------|------------------|------|---------|-----|--| | Lab Code: F | ENSECO | Case No.: | | SAS No.: | | SDG | No.: G | EM6 | 37 | | Matrix (soi | l/water) | : SOIL_ | | | Level | (low | /med): | LOW | _ | | 1 | Concent | cration Units (u | ıg/I | or mg/kg dry w | reight): | MG/F | (G | | | | Analyte | Limit
%R | Spiked Sample
Result (SSR) | С | Sample
Result (SR) C | Spike
Added (| | %R | Q | M | | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Tin | | | | 82387.0133 | | 7.7 | -7026.5 | | NR N | #### 6 DUPLICATES | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | Lab Name: ENSECO_EAST | ····· | Contract: | FIELD EQUIPD | |---------------------------------|-----------|--------------|-----------------| | Lab Code: ENSECO | Case No.: | SAS No.: | SDG No.: GEM637 | | <pre>Matrix (soil/water):</pre> | WATER | Level | (low/med): LOW | | % Solids for Sample: | 100.0 | % Solids for | Duplicate:0 | Concentration Units (ug/L or mg/kg dry weight): UG/L_ | Cont
Analyte Lim | С | Duplicate (D) | С | RPD | Q | М | |--|---|---------------|---------------------------------------|-----|---|--| | Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_Manganese_Mercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Tin | | 21.7000 | - - - - - - - - B - | | | NR N | #### 6 DUPLICATES | EPA | SAMPLE | NO | |-----|--------|----| |-----|--------|----| | Lab | Name: | ENSECO_EAST_ | | Contract: | SB-1(G) | D | |-----|-------|--------------|-----------|-----------|-------------|------| | Lab | Code: | ENSECO | Case No.: | SAS No.: | SDG No.: GE | M637 | Matrix (soil/water): SOIL_ Level (low/med): LOW__ % Solids for Sample: _67.7 % Solids for Duplicate: _67.7 Concentration Units (ug/L or mg/kg dry weight): MG/KG | | · · · · · · · · · · · · · · · · · · · | 1 | | | | T T | Ţ | , | |-----------|---------------------------------------|------------|---------------|---------------|-----------------|------|------------|---------------| | Analyte | Control
Limit | Sample (S) | С | Duplicate (D) | С | RPD | Q | М | | Aluminum | | | $\vdash \mid$ | | \vdash | | - | NR | | Antimony_ | | | - | | - | | - | NR | | Arsenic | | | - | | - | | - | NR | | Barium - | | | 1-1 | | - | | - | NR | | Beryllium | | | - | | - | | - | NR | | Cadmium | | | - | | - | | 1- | NR | | Calcium | | | 1-1 | | - | | - | NR | | Chromium | | | - | | - | | - | NR | | Cobalt - | | | - | | | | 1_ | NR | | Copper | | | - | | | | | NR | | Iron | | | | | | | | NR | | Lead | | 82387.0133 | 171 | 106399.9719 | $I \subseteq I$ | 25.4 | <u>*</u> | P_ | | Magnesium | | | | | $I \subseteq I$ | | Í_ | NR | | Manganese | | | | | | | 1_ | NR | | Mercury | | | | | $ _{\perp} $ | l | \ <u>_</u> | NR | | Nickel | | | | | ΙΞI | | 1_ | NR | | Potassium | | | | | | | 1_ | NR | | Selenium_ | | | | | $ _{\perp} $ | | 1_ | NR | | Silver | | | | | 1_1 | | _ | NR | | Sodium | | | | | 1_1 | | _ | NR | | Thallium_ | | | | | 1_1 | | _ | NR | | Vanadium_ | | | . _ | | 1_1 | | _ | NR | | Zinc | | 15591.8818 | | 16193.4461 | 1_1 | 3.8_ | _ | P_ | | Tin | | | 1_1 | | | | _ | NR | | | | | | | . _ | | 1_ | l | ## 7 LABORATORY CONTROL SAMPLE | Lab Name: E | NSECO_EAST_ | | Contract: | | |-------------|-------------|-----------|-----------|-----------------| | Lab Code: E | ENSECO | Case No.: | SAS No.: | SDG No.: GEM637 | | Solid LCS S | Source: JTE | BAKER | | | | Aqueous LCS | Source: JTE | BAKER | | | | Analyte | Aque
True | eous (ug/Ḥ
Found | -)
%R | True | Found (| | mg/kg)
Limi | its | %R | |--|--------------|---------------------|----------|------|---------|-----|----------------|-----|------| | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc | | 490.50 | | 50.0 | 49.1 | | 80.0 | | 98.2 | | Tin | | | | | | - - | | | | ## 8 STANDARD ADDITION RESULTS | Lab Name | : E | NSECO_ | _EAST | | | | Conti | act | · | | |
 |----------------------|----------|--------|--------------|----------|----------------|----------|--------------|------|--------------|----------------|---------|--------------------| | Lab Code | : E | NSECO | C | Case | e No.: _ | | SAS N | io.: | | SDG No | .: GEM6 | 337 | | | | | | Co | oncentrat | cion | Units: | ug/I | L | | | | | EPA
Sample
No. | | Dil. | 0 ADD
CON | CON | 1 ADD
V CON | | 2 ADD
CON | CON | 3 ADD
CON | Final
Conc. | r | Q | | | | | | | | | | | | | | _
_
_
_ | | | | | | | | | | | | | | -
-
- | | | | | | | | | | | | | | - | | | | | | | | | | | | | | 1 1 1 1 | | | | | | | | | | | | | |
 -
 -
 - | | | | | | | | | | | | l | | _ | ## 9 ICP SERIAL DILUTION EPA SAMPLE NO. | SB-1(S) | L | |---------|---| | ` ' | | Lab Name: ENSECO_EAST_____ Contract: _____ Lab Code: ENSECO Case No.: ____ SAS No.: ____ SDG No.: GEM637 Matrix (soil/water): SOIL_ Level (low/med): LOW___ Concentration Units: ug/L | | Tritical Commis | П | Serial
Dilution | | %
Differ- | | _ | |-----------|-----------------|-----------|--------------------|-------|--------------|----|--------------------------| | 3 | Initial Sample | $ \cdot $ | | cl | ence | | М | | Analyte | Result (I) C | - | Result (S) | ا | ence | Q | 141 | | Aluminum | | - | | | | - | $\overline{\mathtt{NR}}$ | | Antimony | | - | | - | | - | NR | | Arsenic | | - | | - | | - | NR | | Barium - | | - | | | | - | NR | | Beryllium | - | - | | - | | - | NR | | Cadmium | | - | | . _ | | - | NR | | Calcium | | - | | - | | | NR | | Chromium | | - | | | | | NR | | Cobalt | | - | | . - | | | NR | | Copper | | - | | - | | | NR | | Iron | | - | | -1-1 | | | NR | | Lead | 1132.75 | - | 1155.28 | | 2.0 | | P_ | | Magnesium | | - | | | | 1_ | NR | | Manganese | | -11 | | 121 | | 1_ | NR | | Mercury_ | |] { | | | | | NR | | Nickel | | - | | | | | NR | | Potassium | | <u> </u> | | | | | NR | | Selenium_ | | | | | | _ | NR | | Silver - | | -11 | | | | 1_ | NR | | Sodium | | _ | | | | . | NR | | Thallium_ | | _ | | | | _ | NR | | Vanadium | | - | | | | | NR | | Zinc | 1608.70 | [[| 1620.14 | | 0.7_ | | P_ | | | | - | · | - | | | 1 | ## 11 INSTRUMENT DETECTION LIMITS (QUARTERLY) | Lab Name: ENSECO_EAST_ | | Contract: | | | | |------------------------|-----------|-----------|-------------|----------|--------| | Lab Code: ENSECO | Case No.: | SAS No.: | | SDG No.: | GEM637 | | ICP ID Number: | TJA61 | Date: | 11/07/90 | | | | Flame AA ID Number : | | | | | | | Furnace AA ID Number : | | | | | | | Analyte Aluminum Antimony Arsenic Barium Beryllium | Wave-
length
(nm)
-237.30
-206.80
-493.40
-313.00 | Back-
ground | CRDL
(ug/L)
60_
10_
200_
5 | IDL
(ug/L)
 | M P P NR P P | |---|---|-----------------|---|-------------------|--------------| | Aluminum | 237 30 | | 200 | 34 3 | ᆔ | | | | | | | | | | _200.80 | | | | | | | -700 40 | | | | | | | l — | | | | | | | | | | | | | Cadmium_ | _228.80 | | 5_ | 2.7 | P_ | | Calcium | _317.90 | | 5000_ | 12.5 | P_ | | Chromium_ | _267.70 | | 10 | 5.9 | P_ | | Cobalt | _228.60 | l | 50_ | 6.1 | P_ | | Copper | 324.70 | | 25_ | 3.9 | P_ | | Iron | 259.90 | | 100 | 9.5 | P_ | | Lead | 220.30 | | 5_ | 21.7 | P_ | | Magnesium | ⁻ 383.20 | | 5000 | 44.5 | P_ | | Manganese | 257.60 | | 15_ | 0.9 | P_ | | Mercury | - | | 0.2 | | NR | | Nickel | 231.60 | | 40 | 16.7 | P_ | | Potassium | 766.40 | | 5000 | 615.2 | P_ | | Selenium | _ | | 5 | | NR | | Silver | 328.00 | | 10 | 3.4 | P_ | | Sodium | 589.00 | 1 | 5000 | 53.8 | P_ | | Thallium | 1 | | 10_ | | NR | | Vanadium | 292.40 | | 50 | 4.2 | P_ | | zinc | 213.80 | | 20 | 3.4 | P_ | | | | | | | | | · | | | | | | | Comments: | | | | | | |-----------|------|-------------|------|------|---| | |
 | |
 | | _ | | | | |
 |
 | | ## 12A ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY) | Lab Na | ame: | ENSECO_EAST | | Contract: | | | | | |--------|-------|-------------|-------------|-----------|----------|-----|------|--------| | Lab Co | ode: | ENSECO | Case No.: | SAS No.: | | SDG | No.: | GEM637 | | ICP II | D Num | nber: TJA61 | | Date: | 10/20/90 | | | | | | Wave-
length | Ir | nterelement (| Correction D | Factors for | : | |-----------|------------------|------------|---------------|--------------|-------------|------------| | Analyte | (nm) | Al | Ca | Fe | Mg | AS | | Aluminum_ | _237.30_ | | | | _0.0000968 | | | Antimony_ | <u>[</u> 206.80] | -0.0000535 | | | _0.0000352 | | | Arsenic | 193.70 | _0.0070312 | | 0.0012379 | _ | | | Barium | 493.40 | | | | | | | Beryllium | 313.00 | | | | | | | Cadmium | _228.80_ | | | -0.0000790 | | _0.0035766 | | Calcium_ | 317.90 | | | _0.0001214 | | | | Chromium_ | <u>[</u> 267.70] | _0.0000108 | | | | _0.0003276 | | Cobalt | _228.60_ | _0.0000098 | , | _0.0000668 | -0.0000065 | | | Copper | _324.70_ | _0.0000165 | | -0.0000113 | | | | Iron | _259.90_ | _0.0001887 | | | | _0.0016753 | | Lead | _220.30_ | _0.0007199 | | 0.0001870 | | | | Magnesium | 383.20 | | | | | | | Manganese | _257.60 | 0.0000161 | | -0.0001806 | 0.0000077 | _0.0000543 | | Mercury | | | | | | | | Nickel | 231.60 | | | _0.0000321 | -0.0000231 | _0.0003732 | | Potassium | 766.40 | | | | | | | Selenium | T | | | | | | | Silver | 328.00 | | | -0.000660 | | | | Sodium | _589.00_ | | | | | | | Thallium_ | | | | | | | | Vanadium_ | 292.40 | | | -0.0001538 | | | | Zinc | _213.80 <u>_</u> | 0.0000111 | | _0.0001138 | 0.0000118 | | | | | | | | | | | | | | | | | | | Com | ments: | | | | | | |-----|--------|------|--|------|------|------| | | | | ······································ |
 | | | | | |
 | |
 |
 |
 | ## 12B ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY) | Lab | Name: | ENSECO_EAST | | Contract: | | | | | |-----|--------|-------------|-------------|-----------|----------|-----|------|--------| | Lab | Code: | ENSECO | Case No.: | SAS No.: | | SDG | No.: | GEM637 | | ICP | ID Nur | mber: TJA61 | | Date: | 10/20/90 | | | | | | Wave-
length | Ir | nterelement | Correction I | Factors for | : | |-----------|-------------------|-----------|-------------|--------------|-------------|------------| | Analyte | (nm) | ВА | BE | CD | CO | CR | | Aluminum_ | 237.30 | | | | -0.0034440 | -0.0036112 | | Antimony_ | _206.80_ | | | | -0.0018980 | _0.0064468 | | Arsenic | 193.70 | | | | | | | Barium | _493.40_ | | | | | | | Beryllium | <u></u> 313.00_ | | | | | _0.000019 | | Cadmium | _228.80_ | | 0.0035090 | | -0.0051067 | _0.000887 | | Calcium | _317.90 _] | | | | | | | Chromium_ | _267.70 | | | | | | | Cobalt | _228.60_ | 0.0009920 | | 0.0012860 | | _0.000250 | | Copper | _324.70_ | | | | | | | Iron | _259.90_ | | | | | | | Lead | _220.30_ | | | | -0.0281526 | -0.000879 | | Magnesium | _383.20_ | | | | | _0.000643 | | Manganese | _257.60_ | | | | | | | Mercury | | | | | | | | Nickel | 231.60 | | | | _0.0001788 | | | Potassium | 766.40 | <u> </u> | | | | | | Selenium_ | | | | | | | | Silver | _328.00_ | | | | | | | Sodium | _589.00_ | | | | <u> </u> | | | Thallium_ | | | | . | | | | Vanadium_ | _292.40_ | | | | | -0.002316 | | Zinc | [_213.80 _ | | | .l | -0.0000831 | | | Comments: | | | | | |-------------|------|----------|--------------|-----------------| | |
 | <u> </u> | |
 | | - | | | | | | |
 | | |
 | ## 12B ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY) | Lab Name: | ENSECO_EAST | | Contract: | | | | | |-----------|--------------|-----------|-----------|--------------|-----|------|--------| | Lab Code: | ENSECO | Case No.: | SAS No.: | | SDG | No.: | GEM637 | | ICP ID No | amber: TJA61 | | Date: | 10/20/90 | | | | | | | | | | | | | | | Wave- | Ir | terelement (| Correction F | actors for | : | |------------|------------------|------------|--------------|--------------|------------|------------| | 3 3 | length | 077 | 7 T | MN | МО | NI | | Analyte | (nm) | cu | LI | MIN | MO | NI | | Aluminum | _237.30_ | | | | | | | Antimony - | 206.80 | | | | 0.0031529 | -0.0044613 | | Arsenic | 193.70 | | | | _0.0009132 | | | Barium | 493.40 | | | | | | | Beryllium | [313.00 | | | | -0.0000332 | | | Cadmium | | | | | _0.0000343 | -0.0015226 | | Calcium | 317.90 | | | | _0.0004580 | | | Chromium | 267.70 | 0.0001856 | | | -0.0016175 | | | Cobalt | 228.60 | - | | | 0.0002109 | _0.0004159 | | Copper | 324.70 | | | | _0.0004623 | | | Iron | 259.90 | 0.0008705 | | | _0.0006156 | 0.0005539 | | Lead | [220.30 | - | | | -0.0003184 | | | Magnesium | 383.20 | | | | _0.0013193 | -0.0045971 | | Manganese | [257.60] | | | | -0.0003478 | | | Mercury | 1 | | | | | | | Nickel | 231.60 | 0.0001587 | | | | | | Potassium | 766.40 | | | | | | | Selenium | | | | | | | | Silver | 328.00 | | | | | | | Sodium | 589.00 | | | | | | | Thallium | | | | | | | | Vanadium - | 292.40 | -0.0000567 | -0.0001270 | -0.0001270 | -0.0622959 | | | Zinc | 213.80 | 0.0046606 | _ | | -0.0001943 | 0.0031665 | | Comments: | | | · | | |-------------|------|--|---|------| | |
 |
······································ | | | | | | | |
 | ## 12B ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY) | Lab Name: | ENSECO_EAST | | Contract: | | | | | |------------|-------------|-----------|-----------|-------------|-----|------|--------| | Lab Code: | ENSECO | Case No.: | SAS No.: | | SDG | No.: | GEM637 | | ICP ID Nur | mber: TJA61 | | Date: | 10/20/90 | | | | | | Wave-
length | Ir | nterelement (| Correction P | Factors for | : | |------------|-----------------|--------------|---------------------------------------|--------------
-------------------|--------------| | Analyte | (nm) | SB | TI | TL | v _ | ZN | | Aluminum | 237.30 | | | | | | | Antimony - | 206.80 | | 0.0014762 | | -0.0078473 | -0.000381 | | Arsenic | 193.70 | 0.0006066 | _ | | 0.0172519 | | | Barium | 493.40 | _ | · ——— | | | | | Beryllium | 313.00 | | 0.0000377 | | 0.0097424 | | | Cadmium | 7228.80 | | | | 0.0000686 | | | Calcium | 317.90 | | 0.0004330 | | 0.0005337 | | | Chromium | 267.70 | 0.0000989 | 0.0002262 | | 0.0007773 | 0.000292 | | Cobalt - | 228.60 | - | 0.0017787 | | - | _ | | Copper | 324.70 | | -0.0002740 | | -0.0001160 | | | Iron | 259.90 | | -0.0032522 | | 0.0006539 | 0.000965 | | Lead | 7220.30 | -0.0017075 | 0.0005085 | | -0.0003559 | - | | Magnesium | | | | | | | | Manganese | 257.60 | | | | -0.0001086 | 0.000044 | | Mercury | | | | | - | _ | | Nickel | 231.60 | 0.0001525 | 0.0001964 | 0.0007260 | | 0.000218 | | Potasslum | 766.40 | _ | - | - | | _ | | Selenium | | | | | | | | Silver - | 328.00 | | 0.0000608 | | -0.0045016 | l | | Sodium | 589.00 | | - | | , | | | Thallium | - | | · · · · · · · · · · · · · · · · · · · | | | | | Vanadium - | 292.40 | | 0.0003360 | | | | | Zinc | 213.80 | | _ | | 0.0002637 | | | CO | mments: | | | | | |----|---------|-----------------|------|------|--| | | |
 |
 |
 | | | | |
 |
 |
 | | ## 12B ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY) | Lab Name: | ENSECO_EAST | | Contract: | | | |----------------|-------------|-----------|-----------|----------|-----------------| | Lab Code: | ENSECO | Case No.: | SAS No.: | | SDG No.: GEM637 | | ICP ID Nu | mber: TJA61 | | Date: | 10/20/90 | | | | | | | | | | . | | | | | - | | | Wave-
length | Iı | nterelement (| Correction 1 | factors for | : | |--|--|--|---------------|--------------|-------------|---| | Analyte | (nm) | ZR | _ | | _ | _ | | Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Mercury_ Nickel | 237.30
206.80
193.70
493.40
313.00
228.80
317.90
267.70
228.60
324.70
259.90
220.30
383.20 | -0.0702260
-0.0017220
-0.0032953
-0.0001397
-0.0000738 | | | | | | Potassium
Selenium | 766.40 | | | | | | | Silver
Sodium
Thallium | 328.00
589.00 | _0.0023211 | | | | | | Vanadium_
Zinc | 292.40
213.80 | _0.0000505 | | | | | | Com | ments: | | | • | | | | | |-----|--------|--|------|---|------|------|-------------------|--| | | | | | |
 |
 |
 | | | | | |
 | | |
 |
_ | | ## 13 ICP LINEAR RANGES (QUARTERLY) | Lab | Name: | ENSECO_EAST | | Contract: | | | | | |-----|--------|-------------|-----------|-----------|----------|-----|------|--------| | Lab | Code: | ENSECO | Case No.: | SAS No.: | | SDG | No.: | GEM637 | | ICP | ID Nur | mber: TJA61 | | Date: | 10/20/90 | | | | | | ····· | | | |-----------|--------------------------|----------------------|------------| | Analyte | Integ.
Time
(Sec.) | Concentration (ug/L) | М | | Aluminum | 5.00 | 1000000.0 | | | Antimony | 5.00 | 100000.0 | | | Arsenic | 5.00 | 100000.0 | | | Barium | 5.00 | 100000.0 | | | Beryllium | 5.00 | 100000.0 | | | Cadmium | 5.00 | 100000.0 | | | Calcium_ | 5.00 | 1000000.0 | | | Chromium_ | 5.00 | 100000.0 | _ | | Cobalt | 5.00 | 100000.0 | | | Copper | 5.00 | 100000.0 | | | Iron | 5.00 | 500000.0 | | | Lead | 5.00 | 100000.0 | <u> </u> | | Magnesium | 5.00 | 100000.0 | | | Manganese | 5.00 | 100000.0 | | | Mercury | | | NR | | Nickel | 5.00 | 100000.0 | | | Potassium | 5.00 | 1000000.0 | | | Selenium_ | | | NR | | Silver | 5.00 | 100000.0 | | | Sodium | 5.00 | 100.0 | == | | Thallium_ | | | NR | | Vanadium_ | 5.00 | 100000.0 | — | | Zinc | 5.00 | 100000.0 | — | | | | l | ١ | | Cor | men | its: | | | | | | | | | | |-----|-------------|------|------|------------------|------|---|------|------|------|------|-------| | | | |
 |
 |
 | | |
 |
 |
 |
 | | | | | | |
 | _ | |
 | |
 |
 | | | | | |
 |
 | |
 |
 |
 |
 |
— | ICP RAW DATA # ICP COVER SHEET Industrial Metals Anelyst: T. Minervini Date: 5-14-9/ Insturment ID: ALEXIS | ٢ | | 08C18 | . 1 | | | | | HEENTS ICHTOI | |----------|---|-------|---------------|-------------------|-------------------|------------------|------------------------------|---| | | | true | tions
Y/NA | Project
Mumber | Sample
Numbers | Analysis
Test | QC Lot
Number | Analytes: | | 7 | | | | 13637 | 4 | 4 | 090591 B | Al Sb As Ba Be B Cd Ca Cr Co
Cu Fe Pb Li Ng Nn No N1 P K
Se S102 Ag Na Sr Sn T1 T1 V L
Zr | | J | | | | 13637 | 1-2 | W. UR. 5 | 090541 C | Al Sb As Ba Be B Cd Ca Cr Co
Cu Fe Pb Li Ng Mn No Ni P K
Se SiO2 Ag Na Sr Sn Ti Ti V (F.
Zr | | | | | | 13391 | | ILP-AT | 140591 D | Al Sb As Ba Be B (Co Ca Cr Co
Cu Fe (Pb) Li Mg Mn No Ni P K
Se Sidz Ag Na Sr Sn Ti Ti Y Zr.
Zr | | HI | | | | 13592 | 1-2 | TO AT THE AT | 0505913 | (St.) | | NUNSIKTH | | | | IDL's | 1-7 | | 2nd Granter
1991
Day 1 | (A) SD (G) | | | · | | | | | | | Al Sb As Ba Be B Cd Ca Cr Co
Cu Fe Pb Li Mg Mn Mo Ni P K
Se SiOZ Ag Na Sr Sn Tl Ti V Zr.
Zr | | Z | | | | | | | | Al Sb As Ba Be B Cd Ca Cr Co
Cu Fe Pb Li Mg Mn Mo Ni P K
Se SiO2 Ag Na Sr Sn Tl Ti V Zr.
Zr | | | | | | | | | | A1 Sb As Ba Be B Cd Ca Cr Co
Cu Fe Pb Li Mg Mn Mo Ni P K
Se SiO2 Ag Na Sr Sn Tl Ti V Zr.
Zr | Comments_ | # | Sample Name | File | Method | Date | Time | OpiD | Type | Mode | |------------|------------------------|------------------|----------------|----------------------|----------------|----------|---------------|---------| | | | | | | | | | | | | • | | | | | | | | | 1 | ICV-1 | 910514 | ICAP1 | 05/14/91 | 09:43 | JM | S | CONC | | | ICA-5 | 910514 | ICAP1 | 05/14/91 | 09:46 | JM | S | CONC | | | ICV-3 | 910514 | ICAP1 | 05/14/91 | 09:49 | JМ | S | CONC | | | ICV-4 | 910514 | ICAP1 | 05/14/91 | 10:08 | JM | S | CONC | | 5 | ICV-5 | 910514 | ICAP1 | 05/14/91 | 10:10 | | S | CONC | | 6 | ICB | 910514 | ICAP1 | 05/14/91 | 10:18 | JM | S | CONC | | 7 | CRI | 910514 | ICAP1 | 05/14/91 | 10:22 | JM | S | CONC | | 8 | ICSA | 910514 | ICAP1 | 05/14/91 | | JM | S | CONC | | 9 | ICSAB | 910514 | ICAP1 | 05/14/91 | 10:26 | | S | CONC | | | CCV1 | 910514 | ICAP1 | 05/14/91 | 10:30 | JM | S | CONC | | | CCB1 | 910514 | ICAP1 | 05/14/91 | 10:35 | JM | S | CONC | | | ICP-AT BLANK | 910514 | ICAP1 | 05/14/91 | | JM | S | CONC | | | ICP-AT DCS | 910514 | ICAF1 | 05/14/91 | 10:44 | | ន | CONC | | 15 | ICP-AT DCS | 910514 | ICAP1 | 05/14/91 | 10:46 | JM | S | CONC | | 16 | 1363704
1363704S | 910514 | ICAP1 | 05/14/91 | 10:49 | | S | CONC | | | 13637045
1363704D | 910514 | ICAP1 | 05/14/91 | 10:51 | JM | S | CONC | | 18 | TOD OD DI ALILI E CANC | 910514 | ICAP1 | 05/14/91 | 10:55 | | S | CONC | | | ICF-SD BLANK | 910514 | ICAP1 | 05/14/91 | 10:58 | | s
s | CONC | | 20 | ICP-S DCS | 910514
910514 | ICAP1
ICAP1 | 05/14/91
05/14/91 | 10:58 | • | S | CONC | | 21 | | 910514 | ICAP1 | 05/14/91 | 11:10 | JM
JM | 3 · | CONC | | | 1363701 / 090591 C | 910514 | ICAP1 | 05/14/91 | 11:22 | JM | S | CONC | | | CCV-2 | 910514 | ICAP1 | 05/14/91 | 11:28 | JM | S | CONC | | | CCB-2 | 910514 | ICAP1 | 05/14/91 | 11:39 | JM | S | CONC | | | 1363701 | 910514 | ICAP1 | 05/14/91 | 11:41 | JM | S | CONC | | 26 | 13637018 | 910514 | ICAF1 | 05/14/91 | 11:43 | JM | S | CONC | | | 13637015 | 910514 | ICAP1 | 05/14/91 | 12:14 | JM | S | CONC | | 28 | 1363701D | 910514 | ICAP1 | 05/14/91 | 12:20 | | S | CONC | | | 1363702 | 710514 | ICAP1 | 05/14/91 | 12:32 | JM | s | CONC | | | 1363702L | 910514 | ICAP1 | 05/14/91 | 12:35 | JM | S | CONC | | | CRI | 910514 | ICAF1 | 05/14/91 | 12:41 | JM | S | CONC | | 3 2 | ICSA | 910514 | ICAP1 | 05/14/91 | 12:46 | JM | .s | CONC | | 33 | ICSAB | 910514 | ICAF1 | 05/14/91 | 12:49 | JМ | S | CONC | | 34 | CCV3 | 910514 | ICAP1 | 05/14/91 | 12:52 | JM | 3 | CONC | | | CCB3 | 910514 | ICAF1 | 05/14/91 | 12:54 | JM | 3 | CONC | | | ICF-AT BLANK | 910514 | ICAP1 | 05/14/91 | 14:07 | JM | S | CONC | | | | 910514 | ICAF1 | 05/14/91 | 14:10 | | 3 | CONC | | | ICP-AT DCS | 910514 | ICAP1 | 05/14/91 | 14:15 | | S | CONC | | | 13891-01 | 910514 | ICAP1 | 05/14/91 | 1.4:22 | | 5 | CONC | | | 13691-01MS | 910514 | ICAP1 | 05/14/91 | 14:24 | | 3 | CONC | | | 15891-01DU | 910514 | ICAP1 | 05/14/91 | 14:25 | | 3 | CONC | | | 13598-01 | 910514 | ICAP1 | 05/14/91 | 14:27 | | 3 | CONC | | | 18592-01%5 | 710514 | ICAPI | 05/14/91 | 14:30 | | ಷ | CONO | | | 13572-01DU | 910514 | ICAF1 | 05/14/91 | 14:32 | | 5. | CONC | | | 13592-02 | 910514 | ICAP1 | 05/14/91 | 14:34 | | 5 | CONC | | | CCV-4 | 910514 | ICAP1 | 05/14/91 | 15:08 | | ្ន | CONC | | • | CCV-4 (S102) | 910514 | ICAP1 | 05/14/91 | 15:12 | | 3 | CONC | | | CCB-4 | 910514 | ICAP1 | 05/14/91 | 15:22 | | S | CONC | | | 13592-02
CCV-5 | 910514 | ICAP1 | 05/14/91 | 15:35 | | ទ | CONC | | | .CCV=5_(SiO2) | 910514 | ICAP1 | 05/14/91
05/14/91 | 15:56
15:59 | | ກ
S | CONC | | | CCB-5 | 910514
910514 | ICAP1
ICAP1 | 05/14/91 | 16:00 | | S | CONC | | | 108 | 910514 | ICAP1 | 05/14/91 | 16:05 | | | | | JJ | 163 | 710014 | I CHL I | 00/14/71 | 10:03 | 71.1 | UUU | 0-0-15c | | Ana I | lysis Report | Summary | - | Tue 05-14-9 | 91 04:1 | 8:40 | F·M | page | 2 | |-------
--------------|------------------|----------------|----------------------|---------|------|----------|------|---| | # | Sample Name | File | Method | Date | Time | 0p1D | Туре
 | Mode | | | | CC9-6 | 910514
910514 | ICAP1
ICAP1 | 05/14/91
05/14/91 | | | s
s | CONC | | IDL's 1-7 2nd Quarter 1991 1st Day | Method: | ICAP1 | « Standa | rd: STD1-B | lank | | | | |-------------|--------|----------|------------|-------|--------|--------|---------------| | Elem | AL | SB | AS | ВА | BE | CD | CA | | Avge | .0010 | 0004 | .0001 | .0000 | .0037 | .0003 | .0002 | | SDev | .0011 | .0006 | .0016 | .0000 | .0004 | .0004 | .0006 | | %RSD | 113.1 | -141.4 | 1556. | .0000 | 11.47 | 141.4 | 2 82.8 | | #1 | .0002 | .0000 | .0012 | .0000 | .0034 | .0006 | .0006 | | #2 | .0018 | 0008 | 0010 | .0000 | .0040 | .0000 | 0002 | | Elem | CR | co | cu | FE | PB | MG | MN | | Avge | .0009 | .0002 | .0009 | .0014 | .0008 | .0193 | E000. | | SDev | .0013 | .0009 | .0001 | :0003 | .0006 | .0050 | .0001 | | %RSD | 141.4 | 424.3 | 15.71 | 20.20 | 70.71 | 25.65 | 47.14 | | #1 | .0018 | .0008 | .0010 | .0016 | .0012 | .0228 | .0004 | | #2 | .0000 | 0004 | .0008 | .0012 | .0004 | .0158 | .0002 | | Elem | NI | К | AG. | NaHi | NaLo | V | ZN | | Avge | 0031 | .0093 | 0038 | .0068 | 1677 | .0002 | .0017 | | SDev | .0001 | .0064 | .0006 | .0074 | .0072 | .0006 | .0001 | | %RSD | -4.562 | 68.43 | -14.89 | 108.1 | -4.301 | 282.8 | 8.319 | | #1 | 0032 | .0138 | 0034 | .0120 | 1626 | .0006 | .0016 | | #2 | 0030 | .0048 | 0042 | .0016 | 1728 | 0002 | .0018 | | Elem | В | LI | P | MO | SE | SR | Si02 | | Avge | .0004 | E000. | .0015 | .0002 | 0020 | 0005 | .0359 | | SDev | .0003 | .0004 | .0001 | .0003 | .0003 | .0004 | .0010 | | %RSD | 70.71 | 141.4 | 9.428 | 141.4 | -14.14 | -84.85 | 2.758 | | #1 | .0006 | .0006 | .0016 | .0000 | 0018 | 0002 | .0366 | | #2 | .0002 | .0000 | .0014 | .0004 | 0022 | -,0008 | .0352 | | Elem | SN | TL | TI | ZR | | | | | Avge | .0031 | .0164 | .0005 | .0002 | | | | | SDev | .0001 | 10071 | .0001 | .0009 | | | | | MRSD | 4.562 | 43.12 | 28.28 | 424.3 | | | | | #1 | .0030 | .0214 | .0004 | .0008 | | | | | #€ | .0032 | .0114 | .0004 | 0004 | | | | | Method: | ICAP1 | Standa | ard: STD3 | | | | | |------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------------|-------------------------------|------------------------------|-------------------------------| | Elem | AL | SB | AS | BA | BE | CD | CA | | Avge | .6175 | .0767 | .1357 | .6515 | .4202 | .0008 | .4017 | | SDev | .0050 | .0004 | .0021 | .0007 | .0003 | .0003 | .0004 | | %RSD | .8016 | .5531 | 1.543 | .1085 | .0454 | 35.36 | .1056 | | #1 | .6140 | .0770 | .1372 | .6520 | .6200 | .0010 | .4020 | | #2 | .6210 | .0764 | .1342 | .6510 | .6204 | | .4014 | | Elem
Avge
SDev
XRSD | CR
.3820
.0003
.0740 | CO
.2220
.0000
.0000 | CU
.2947
.0004
.1440 | FE
2.165
.000
.0196
2.165 | PB
.0877
.0001
.1613 | MG
1.227
.005
.4149 | MN
.4338
.0009
.1956 | | 非 巴 | .3818 | .2220 | .2944 | 2.165 | .0876 | 1.224 | .4344 | | Elem | NI | K | AG | NaHi | NaLo | v | ZN | | Avge | .4346 | .00 89 | 0048 | .0549 | 2.429 | .2008 | .3588 | | SDev | .0037 | .0016 | .0008 | .0018 | .010 | .0009 | .0006 | | %RSD | .8461 | 17.48 | -17.68 | 3.349 | .3960 | .4226 | .1577 | | #1 | .4320 | .0100 | 0042 | .0562 | 2.435 | .2014 | .3592 | | #2 | .4372 | .0078 | 0054 | .0536 | 2.422 | .2002 | .3584 | | Elem . | 8 | LI | P | MO | SE | SR | 5102 | | Avge | .1715 | .2449 | 1.343 | .0986 | .3605 | 5.713 | .0598 | | SDev | .0004 | .0024 | .007 | .0009 | .0010 | .003 | .0026 | | %RSD | .2474 | .9817 | .4845 | .8606 | .2746 | .0569 | 4.257 | | #1 | .1718 | .2432 | 1.347 | .0992 | .3598 | 5.711 | .0616 | | 明記 | .1712 | .2466 | 1.338 | .0980 | .3612 | 5.715 | .0580 | | Elem
Avge
SDev
MRSD | SN
.2252
.0020
.8792 | TL
1.644
.011
.6968 | TI
.6626
.0006
.0854 | ZR
.5186
.0059
1.145 | | | | | . ↓ ‡
8. ‡ | . 2266
. 2238 | 1.652
1.636 | .5630
.6622 | .5228
.5144 | | | | | Method: | ICAP1 | Standa | rd: STD4 | | | | | | |------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------------|-------------------------------|---------------------------------|--| | Elem
Avge
SDev
%RSD | AL
.0019
.0016
81.88 | SB
.0004
.0006
141.4 | AS
0050
.0011
-22.63 | BA
.0025
.0001
5.657 | BE
.0038
.0000 | CD
0003
.0004
-141.4 | CA
3.922
.010
.2560 | | | #1
#2 | .0030 | .000B | 0058
0042 | .0024 | .0038
.0038 | .0000
0006 | 3.915
3.929 | | | Elem
Avge
SDev
%RSD | CR
.0004
.0011
188.4 | CO
0003
.0001
-47.14 | CU
.0009
.0001
15.71 | FE
.0040
.0003
7.071 | PB
.0011
.0004
38.57 | MG
11.69
.04
.3338 | MN
.0008
.0000 | | | #1
#2 | 0002
.0014 | 0004
0002 | .0008
.0010 | .0038
.0042 | .0008
.0014 | 11.67
11.72 | .000B | | | Elem
Avge
SDev
%RSD | NI
0022
.0025
-115.7 | K
.8489
.0047
.5498 | AG
0039
.0007
-18.13 | NaHi
.3402
.0051
1.497 | NaLo
25.16
.19
.7460 | .0001
.0001
141.4 | ZN
.0023
.0001
6.149 | | | #1
#2 | 0004
0040 | .8456
.8522 | 0034
0044 | .3366
.3438 | 25.03
25.29 | 0000.
2000. | .0024
.0022 | | | Elem
Avge
SDev
%RSD | 8
.0002
.0009
424.3 | LI
.0001
.0001
141.4 | P
.0028
.0026
90.91 | MO
0006
.0000 | SE
0003
.0013
-424.3 | SR
.0374
.0000
.0000 | SiD2
.0360
.0014
3.928 | | | #1
#2 | 0004
.0008 | 0000.
2000. | .0046
.0010 | 0006
0006 | 0012
.0004 | .0374
.0374 | .0370
.0350 | | | Slem
Avge
SDev
%RSD | SN
.0033
.0001
4.285 | TL
0203
.0058
-28.56 | TI
0014
.0003
-20.20 | ZR
.0003
.0004
141.4 | | | | | | #1.
#2 | .032
.034 | 0162
0244 | 0012
0016 | .0000
.0006 | | | | | | Method: | ICAP1 | CAP1 Standard: STD2 | | | | | | |---------|--------|---------------------|----------------|-------|--------|-------|-------| | Elem | AL | SB | AS | ва | BE | CD | CA | | Avge | .0020 | 0001 | .0013 | .0000 | .0037 | .4371 | .0029 | | SDev | .0006 | .0001 | .0001 | .0000 | .0004 | .0004 | .0004 | | %RSD | 28.28 | -141.4 | 10.88 | .0000 | 11.47 | .0971 | 14.63 | | #1 | .0024 | .0000 | .0012 | .0000 | .0040 | .4374 | .0024 | | #2 | .0016 | 0002 | .0014 | .0000 | .0034 | .4368 | .0032 | | Elem | CR | co | CU | FE | PB | MG | MN | | Avge | .0007 | .0011 | .0013 | .0022 | .0012 | .ozaa | .0004 | | SDev | .0010 | .0004 | .0001 | .0003 | .0003 | .0018 | .0000 | | %RSD | 141.4 | 38.57 | 10.88 | 12.86 | 23.57 | 7.890 | .0000 | | #1 | .0014 | .0008 | .0012 | .0024 | .0010 | .0220 | .0004 | | #2 | .0000 | .0014 | .0014 | .0020 | .0014 | .0245 | .0004 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Avge | 0037 | .0092 | .7328 | .0081 | 1584 | .0005 | .0034 | | SDev | .0027 | .0037 | .0020 | .0010 | .0045 | .0001 | .0003 | | %RSD | -72.62 | 39.97 | .2702 | 12.22 | -2.857 | 28.28 | 8.319 | | #1 | 0018 | .0066 | .7342 | .0074 | 1616 | .0006 | .0036 | | #2 | 0056 | .0118 | .7314 | .0088 | 1552 | .0004 | .0032 | | Elem | В | LI | P | MO | SE | SR | Si02 | | Avge | .0010 | .0000 | 0001 | E000. | 0006 | .0001 | .0627 | | SDev | .0000 | .0003 | .0030 | .0001 | .0003 | .0001 | .0013 | | %RSD | .0000 | .0000 | -29 70. | 47.14 | -47.14 | 141.4 | 2.030 | | #1 | .0010 | 0002 | .0020 | .0004 | 0004 | 0000 | .0636 | | #2 | .0010 | .0002 | 0022 | .0002 | 0008 | .0002 | .0618 | | Elem | ΞN | TL | TI | ZR | | | | | Avge | .0031 | .0173 | .0008 | .0004 | | | | | SDev | .007 | .0044 | .0000 | .0000 | | | | | %RSD | 22.81 | 25.34 | .0000 | .0000 | | | | | #1 | .0034 | .0204 | .0008 | .0004 | | | | | #2 | .0026 | .0142 | .0008 | .0004 | | | | | Method: | ICAP1 | Standa | Standard: STD5 | | | | | | |------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------------|--------------------------------|--| | Elem
Avge
SDev
%RSD | AL
0002
.0011
-565.7 | 0000
.0000 | AS
0024
.0011
-47.14 | BA
.0000
.0000 | BE
.0038
.0003
7.443 | CD
.0003
.0001
47.14 | CA
.0005
.0004
84.85 | | | #1
#2 | .0006
0010 | 0002 | 0032
0016 | .0000 | .0036
.0040 | .0004
.0002 | 8000.
2000. | | | Elem
Avge
SDev
%RSD | CR
.0013
.0013
97.91 | CD
.0004
.0003
70.71 | CU
.0012
.0003
23.57 | FE
.0078
.0000
.0000 | PB
.0014
.0003
20.20 | MG
.0182
.0003
1.554 | MN
.0082
.0000 | | | #1
#2 | .0022
.0004 | .0006 | .0010 | .0078
.0078 | .0016
.0012 | .0180
.0184 | .0082 | | | Elem
Avge
SDev
%RSD | NI
0015
.0021
-141.4 | K
.0073
.0004
5.812 | AG
.0014
.0031
222.2 | NaHi
.0061
.0027
44.05 | NaLc
1761
.0018
-1.044 | v
.0002
.0003
141.4 | ZN
.0020
.0003
14.14 | | | #1
#2 | 0030 | .0070
.0074 | .0036
0008 | .0080 | 1748
1774 | .0004 | .0022 | | | Elem
Avge
SDev
%RSD | B
.0000
.0000 | LI
0003
.0001
-47.14 | P
.0012
.0040
330.0 | MO
.0000
.0000 | SE
.0002
.0009
424.3 | SR
0001
.0001
-141.4 | SiO2
4.217
.006
.1476 | | | #1
#2 | .0000 | 0004
0002 | 0016
.0040 | .0000 | .000 8
0004 | .0000
0002 | 4.213
4.221 | | | Elem
Avge
SDev
%RSD | SN
.0032
.003
5.839 | TL
.0198
.0009
4.285 |
TI
.0008
.0003
35.36 | ZR
.0007
.0007
101.0 | | | | | | #1
#E | .0030
.0034 | .0192
.0204 | .0006 | .0012
.0002 | | | | | Method: ICAP1 | Element | Wavelen | High std | Low std 3 | Slope | Y-intercept | Date Standardiz | |----------|---------|----------|---------------------------------------|---------|-------------|------------------------| | AL | 237.313 | STD3 | STD1-Blank 1 | • | 015970 | 05/14/91 09:30 | | 5B | 204.838 | STD3 | STD1-Blank 8 | | .010337 | 05/14/91 09:30 | | AS | 193.696 | STDS | | 15.5267 | 001553 | 05/14/91 09:30 | | EA | 493.409 | STD3 | STD1-Blank 3 | | .000000 | 05/14/91 09:30 | | BE | 313,042 | STD3 | | 3.26511 | 012081 | 05/14/91 09:30 | | CD | 228.802 | STDS | STD1-Blank 4 | | 001374 | 05/14/91 09:38 | | CA | 317.933 | STD4 | STD1-Blank 8 | • | 0013/4 | 05/14/91 09:35 | | CR | 267.716 | STDS | STD1-Blank 5 | | 003100 | 05/14/91 09:30 | | CC | 228.516 | STD3 | STD1-Blank S | • | 001811 | 05/14/91 09:30 | | CU | 324.754 | STD3 | STD1-Blank 6 | | 001311 | 05/14/91 09:30 | | FE | 259.940 | STD3 | STD1-Blank 4 | | 006469 | 05/14/91 09:30 | | 25
25 | 220.353 | STD3 | STD1-Blank S | | 017926 | 05/14/91 09:30 | | MG | 383.231 | STD4 | | | 165326 | 05/14/91 09:35 | | AN | | | STD1-Blank 8 | | | 05/14/91 09:30 | | | 257.610 | STD3 | STD1-Blank 4 | | 001382 | | | NI | 231.604 | STD3 | STD1-Blank 4 | | .014229 | 05/14/91 09:30 | | K | 766.491 | STD4 | STD1-Blank 1 | | -1.10767 | 05/14/91 09:35 | | AG | 328.048 | STD2 | STD1-Blank a | | .010318 | 05/14/91 09:38 | | NaHi | 330.223 | STD4 | STD1-Blank a | | -2.03959 | 05/14/91 09:35 | | MaLc | 588.775 | STDG | STD1-Blank 3 | | .45919 | 05/14/91 09:30 | | ∵ | 292.402 | STD3 | · · · · · · · · · · · · · · · · · · · | 9.31902 | 001864 | 05/14/91 09:30 | | ZN | 213.856 | STD3 | STD1-Blank 5 | | 009605 | 05/14/91 09:30 | | B | 249.678 | STD3 | STD1-Blank | | 004518 | 05/14/91 09:30 | | ĻΙ | 670.704 | EATE | STD1-Blank 8 | | 002453 | 05/14/91 09:30 | | F | 214.914 | STD3 | STD1-Blank 3 | | 056006 | 05/14/91 09:30 | | 140 | 202.030 | STD3 | STD1-Blank 8 | | 004060 | 05/14/91 09:30 | | 38 | 196.026 | STDS | STD1-Blank 8 | 27.2249 | .054470 | 05/14/91 09:30 | | 3R | 421.552 | STD3 | STD1-Blank | .350042 | .000175 | 05/14/91 09:30 | | 510E | 288.158 | STDS | STD1-Blank | 10.2365 | 367492 | 05/14/91 09:41 | | SN | 189.989 | STD3 | STD1-Blank 4 | 44.9079 | 139214 | 05/14/91 09:30 | | īL. | 377.572 | STD3 | STD1-Blank o | 6.11669 | 100314 | 05 /14/91 09:50 | | 71 | 334.741 | EDTE | STD1-Blank | 3.02322 | 001512 | 05/14/91 09:30 | | IR | 337.198 | ECTE | STD1-Blank | 3.85292 | 000771 | 05/14/91 09:30 | | | | | | | | | Method: ICAP1 Sample Name: ICV-1 Run Time: 05/14/91 09:43:54 Comment: QC-19,LOT3-41AS (SPEX) Mode: CONC Corr. Factor: 1 | Mode: CO | NC Corr. | Factor: 1 | | | | | | |---------------------------------------|--|---------------------------------------|--------------------------------------|--|--|--------------------------------------|--| | Elem
Units
Avge
SDev
%RSD | AL
PPM
0009
.0159
-1854. | SB
FPM
1.024
.004
.3484 | AS
PPM
1.022
.024
2.376 | BA
PPM
.0000
.0000 | BE
PFM
1.035
.000
.0006 | CD
PPM
1.022
.007
.4995 | CA
PPM
1.051
.004
.3427 | | #1
#2 | 0121
.0104 | 1.022
1.027 | 1.039
1.004 | .0000 | 1.035
1.035 | 1.017 | 1.048
1.053 | | Elem
Units
Avge
SDev
%RSD | CR
PPM
1.018
.008
.8016 | CO
FPM
1.055
.003
.2428 | CU
PPM
.9912
.0010
.0971 | FE
PPM
1.021
.001
.0646 | PB
PPM
1.041
.006
.6157 | MG
PPM
1.063
.028
2.616 | MN
PPM
1.002
.001
.0648 | | #1
#2 | 1.012 | 1.057
1.053 | .9 9 19
.9905 | 1.022
1.021 | 1.045
1.036 | 1.044
1.083 | 1.002
1.003 | | Elem
Units
Avge
SDev
%RSD | NI
FPM
1.015
.011
1.087 | K
PPM
2978
.2358
-79.20 | AG
FPM
.0002
.0008
328.3 | NaHi
PPM
2413
.5105
-211.6 | NaLo
ppm
0150
.0142
-94.28 | V
PPM
1.015
.001
.1141 | ZN
PPM
1.004
.002
.1554 | | #2 | 1.008 | 1310 | 0003 | .1197 | 050 | 1.015 | 1.003 | | Elem
Units
Avde
SDev
%RSD | B
PPM
.0010
.0016
157.7 | LI
PPM
.0000
.0035
2780e6 | F
PPM
0897
.0634
-70.72 | MO
PPM
.9808
.00 29
.2731 | SE
FPM
.7388
.0346
3.689 | 3R
PPM
,0000
.0002
545.7 | 8102
PPM
.1032
.0114
11.07 | | 91.
92 | .0021
0001 | 0025
.0025 | 1345
0448 | .7827
.7788 | .9143
.9632 | .0002
-,0001 | .1113
.0952 | | Elem
Units
Avge
BDev
URSD | SN
P PM
.0 032
.0321
1173. | TL
PPM
1.048
.001
.1266 | TI
FPM
1.017
.003
.5524 | ZR
PPM
0012
.0017
-139.9 | | | | | #1
#2 | 0237
.0301 | 1.048
1.049 | 1.019
1.015 | 0024
.0000 | | | | page 1 Method: ICAP1 Sample Name: ICV-2 Run Time: 05/14/91 09:46:15 Comment: 05-7,LOT 3-47AS (SPEX) Mode: CONC Corr. Factor: 1 | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|------------------------------------|-----------------------------| | Units | FPM | FFM | PPM | FFM | PPM | PPM | PPM | | Avge | .9709 | .0182 | 0279 | .9946 | .0010 | .0001 | .0128 | | SDev | .0000 | .0034 | .0330 | .0017 | .0000 | .0007 | .0036 | | XRSD | .0031 | 20.00 | -118.2 | .1746 | 1.491 | 837.1 | 28.25 | | #1 | .9709 | .0156 | 0046 | .9959 | .0010 | 0004 | .0102 | | #2 | .9709 | .0208 | 0512 | .9934 | .0010 | .0006 | .0153 | | Elem
Units
Avge
SDev
XRSD | CR
3PM
037
.0030
-30.32 | 00
PPM
.0026
.0000
.0561 | CU
FPM
.0054
.0010
17.72 | FE
PPM
.0042
.0020
47.17 | PB
PPM
0028
.0032
-111.2 | MG
PPM
0008
.0000
9561 | MN
PPM
.0013
.0000 | | #1 | 00 5 8 | .0024 | .00 61 | .0055 | 0006 | 0008 | .0013 | | #2 | 0016 | .0024 | .0048 | .008 | 0051 | 0008 | .0013 | | Elem | NI | K | AG | NaHi | NaLo | 9 | ZN | | Units | PPM | Avge | .0078 | 9.647 | .9959 | .8347 | .9618 | 0012 | .0033 | | SDev | .0013 | .185 | .0046 | .0017 | .0011 | .0013 | .0008 | | %RSD | 16.42 | 1.921 | .4620 | .2087 | .1133 | -111.1 | 24.26 | | #1 | .0087 | 9.514 | .9992 | .8359 | .9610 | 0021 | .0028 | | #2 | .006 9 | 9.778 | .9927 | .8335 | .9625 | 0003 | .003 9 | | Elen | 9 | LI | 9 | MD | SE | SR | SiG2 | | Umits | FPM | PPM | PPM | PPM | PPM | PPM | PPM | | Avge | .9492 | .0000 | 0700 | 0041 | .0302 | .0002 | 1.161 | | SDev | .0192 | .001 | .0212 | .0000 | .0809 | .0001 | .004 | | KRSD | 1.750 | -1324e6 | -30.22 | 0339 | 248.2 | 40.41 | .3753 | | (* 1) | .982 9 | 0008 | 0850 | 0041 | 0270 | .०००३ | 1.158 | | 의료 | .95 56 | 0008 | 0551 | 0041 | .0873 | .०००२ | 1.164 | | Elva
Unite
Avge
Sõev
Unit | EN
PPM
0139
.0137
.0137
.049 | TL
PPM
.0583
.0320
83.05 | TI
FPM
.0024
.0004
17.39
.0027 | ZR
PPM
0012
.0005
-46.41 | | | | | #2 | 0229 | .0157 | .0021 | 0015 | | | | Method: ICAP1 Sample Name: ICV-3 Run Time: 05/14/91 09:49:21 Comment: SOLUTION 041891 Mode: CONC Corr. Factor: 1 | Elem
Units
Avge
SDev
%RSD | AL
PPM
.0045
.0181
400.0 | SB
PPM
.0241
.0293
121.7 | AS
PPM
0257
.0023
-8.840 | BA
PPM
.0049
.0009
17.68 | BE
PPM
.0006
.0005
78.56 | CD
FPM
0007
.0006
-87.61 | CA
FPM
52.29
.00 | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------| | #1 | .0173 | .0034 | 0273 | .0043 | .0010 | 0003 | 52.29 | | #2 | 008 3 | .0448 | 0241 | .0055 | .0003 | 0012 | 52.29 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | Avge | .0236 | .0011 | .0041 | .7111 | .0134 | 52.74 | .0157 | | SDev | .0045 | .0013 | .0010 | .0020 | .0062 | .27 | .0013 | | %RSD | 18.93 | 113.1 | 23.43 | .2759 | 46.58 | .5099 | 8.202 | | #1 | .0268 | .0002 | .0048 | .7124 | .0178 | 52.93 | .0168 | | #2 | .0204 | | .0034 | .7097 | .0090 | 52.55 | .0150 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | PPM | PPM | ppm | PPM | PPM | | Avge | .0420 | 50.74 | .0017 | 53.44 | 50.03 | .0035 | .0070 | | SDev | .0013 | .45 | .0000 | .43 | .32 | .0023 | .0008 | | %RSD | 3.118 | .8963 | .5973 | .7972 | .6326 | 65.12 | 11.54 | | ₩1 | .0430 | 51.06 | .0017 | 53.74 | 50.25 | .0017 | .0064 | | #2 | .0411 | 50.42 | .0017 | 53.13 | 49.81 | .0051 | .0075 | | Elem | 8 | LI | P | MO | SE | SR | 3102 | | Units | :FM | PPM | P PM | PPM | PPM | PPM | PPM | | Avge | .0049 | 0016 | 0585 | 0049 | .0450 | .0034 | .3222 | | SDev | .0048 | .0012 | .1322 | .0057 | .0001 | .0001 | .0058 | | KRSD | 49.87 | -70.71 | -226.1 | -83.53 | .1544 | 1.473 | .7012 | | #1 | .0103 | 008 | 1519 | 0028 | .0450 | .0034 | .218 1 | | #2 | .0035 | 0025 | .0350 | 0109 | .0449 | .0033 | .6263 | | Elem
Unita
Avge
SDev
XRSD | 3N
FPM
.0090
.0044
70.85 | TL
PPM
0075
.0024
-35.29 | TI
PPM
0009
.0004
-45.54 | ZR
PPM
0007
.0000
7348 | | | | | #1
#2 | .0045
.0135 | 0094
0056 | 0006
0012 | 0007
0007 | | | | Method: ICAP1 Sample Name: ICV-4 Run Time: 05/14/91 10:08:25 Comment: SOLUTION 032791 Mode: CONC Corr. Factor: 1 | •
| | | | | | | | | |---|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--| | | Elem
Units
Avge
SDev
%RSD | AL
FPM
0349
.0357
-102.3 | SB
PPM
.0103
.0001
.4418 | AS
PPM
0416
.0112
-26.95 | BA
PPM
.0000
.0000 | BE
PPM
.0007
.0010
127.1 | CD
PPM
0008
.0032
-391.2 | CA
PPM
.0077
.0036
47.15 | | | #1
#2 | 0096
0601 | .0103
.0103 | 0496
0337 | .0000 | .0001 | 0031
.0015 | .0051
.0102 | | | Elem
Units
Avge
SDev
%RSD | CR
PPM
.0025
.0000
.4792 | CO
PPM
.0010
.0013
130.0 | CU
PFM
0007
.0039
-569.1 | FE
FPM
0028
.0026
-94.07 | PB
FPM
.0023
.0095
408.8 | MG
PPM
.0024
.0340
1328. | MN
PPM
0005
.0013
-281.5 | | | #1
#記 | .0025
.0025 | .0001
.0019 | 0034
.0020 | 0046
0009 | .00 9 0
0044 | 0215
.0266 | 0014
.0005 | | | Elem
Units
Avge
SDev
%RSD | NI
FPM
0045
.0071
-158.1 | K
PPM
2263
.1348
-59.55 | AG
PPM
0013
.0011
-86.28 | NaHi
PPM
1261
.6822
-540.9 | NaLo
ppm
0208
.0071
-34.05 | V
PPM
0024
.0004
-14.90 | ZN
PFM
0005
.0016
-284.2 | | | #1
#2 | 0095
.0005 | 3214
1310 | 0021
0005 | .3543
4085 | 0258
0158 | 0021
0024 | 0014
.0004 | | | Elem
Units
Avge
SDev
KRSD | 8
FPM
0030
.0031
-102.7 | LI
PPM
.9804
.0000 | P
PPM
23.53
.34
1.525 | MO
PFM
0079
.0057
-72.56 | SE
PPM
.0522
.0231
44.28 | SR
PPM
1.032
.002
.2063 | S102
PPM
.0951
.0480
50.51 | | | # 1
音盘 | 0008
00 52 | .9804
.9804 | 23.27
23.78 | 0038
0120 | .0358
.0485 | 1.030
1.033 | .0611
.1270 | | | Elem
Units
Avge
SDev
CRSD | SN
PFM
5.109
.006
.1259 | TL
PPM
5.070
.095
1.870 | TI
PPM
0014
.0008
-59.81 | ZR
FPM
.9132
.0065
.7166 | | | | | | #1
#2 | 5.14
5.10 5 | 5.002
5.137 | 0020
0008 | .7085
.9178 | | | | | | | | | | | | | | Method: ICAF1 Sample Name: ICV-5 Run Time: 05/14/91 10:10:39 Comment: SOLUTION 050291 Mode: CONC Corr. Factor: 1 | node: cc | DIAC COLL | · ractor: 1 | • | | | | | |---------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Elem
Units
Avge
SDev
%RSD | AL
FPM
0100
.0350
-350.6 | SB
PPM
.0207
.0074
35.59 | AS
PPM
0092
.0200
-216.2 | BA
PPM
.0000
.0000 | BE
PPM
.0001
.0013
2254. | CD
PPM
0013
.0025
-190.8 | CA
PPM
.0102
.0072
70.67 | | #1 | .0147 | .0155 | 0233 | .0000 | 000 9 | 0031 | .01 53 | | #2 | 0347 | .0259 | .0049 | | .0010 | .0005 | .0051 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | PPM | PPM | FPM | FFM | | Avge | .0005 | .0045 | .0000 | .0157 | .0069 | .0351 | .0184 | | SDev | .0030 | .0013 | .0010 | .0013 | .0032 | .0024 | .0007 | | %RSD | 581.2 | 28.40 | 31060. | 8.310 | 45.98 | 6.798 | 3.536 | | #1 | .0025 | .00 54 | 00 07 | .0166 | .0046 | .348 | .0189 | | #2 | 0015 | .0034 | .0007 | .0148 | .0091 | .334 | .0180 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | PPM | PFM | ppm | PPM | PPM | | Avge | 0032 | .0000 | .0005 | .2974 | 0058 | 0004 | .0000 | | SDev | .0065 | .2190 | .0023 | .0888 | .0098 | .0002 | .0008 | | %RSD | -201.8 | 420e4 | 451.2 | 29.84 | -169.7 | - 49. 64 | 12330. | | \$1 | 0078 | .1548 | .0021 | .2348 | .0012 | 0002 | .0005 | | \$2 | .0014 | 1548 | 0011 | .3604 | 0127 | 0005 | 0005 | | Elem | 8 | LI | P | MO | SE | SR | 5108 | | Units | PPM | PFM | PFM | PPM | PPM | PPM | FPM | | Avge | .0048 | .0000 | .1120 | 0061 | .0192 | .0008 | 20.20 | | SDev | .0002 | .001 | .0053 | .0029 | .0115 | .0005 | .23 | | KRED | 3,794 | -1324e6 | 4.765 | -47.21 | 59.92 | 57.85 | 1.143 | | #1 | .0049 | .0008 | .115 8 | 0041 | .0111 | .0011 | 80.04 | | #2 | .0045 | 0008 | .1083 | 0081 | .0273 | .0005 | 20.37 | | Elem
Units
Avge
BDev
%ASD | SN
PPM
0 225
.0187
.36.71 | TL
PPM
.0271
.0540
197.1 | FFM
.0000
.000
-17870. | ZR
PPM
.0170
.0153
89.99 | | | | | # ::
#2 | 0315
0135 | .0453
0111 | 0003
.0003 | .0277
.00 62 | | | | Method: ICAP1 Sample Name: ICB Operator: JM Run Time: 05/14/91 10:18:49 Comment: | node. Co | .40 0011 | ractor: 1 | • | | | | | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--| | Elem
Units
Avge
SDev
%RSD | AL
PFM
0495
.0249
-50.29 | SB
FPM
.0181
.0110
60.62 | AS
PPM
.0360
.0130
36.16 | BA
PPM
.0000
.0000 | BE
PPM
.0003
.0009
275.1 | CD
PFM
0001
.0019
-2342. | CA
PFM
.0000
.0072
175200. | | #1 | 0319 | .0103 | .0453 | .0000 | .0010 | .0013 | .0051 | | #2 | 0671 | .0258 | .0268 | | 0003 | 0014 | 0051 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | FPM | PPM | FFM | PFM | | Avge | 0005 | .0009 | 0007 | 0005 | .0023 | 0026 | 0014 | | SDev | .0015 | .0013 | .0000 | .0007 | .0031 | .218 | .0013 | | %RSD | -278.8 | 141.6 | 2753 | -141.5 | 132.9 | -849.3 | -94.24 | | #1 | .0005 | .0000 | 0007 | .0000 | .0045 | .0129 | 0005 | | #2 | 0014 | .0018 | 0007 | 0009 | .0001 | 0180 | 0023 | | Elem | HI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | PPM | PPM | ppm | PPM | PPM | | Avge | 0019 | 1548 | 0008 | 5101 | 0393 | 0013 | .0000 | | SDev | .0058 | .1011 | .0004 | .2136 | .0093 | .0011 | .0008 | | %RSD | -313.3 | -65.27 | -45.84 | -41.88 | -23.57 | -86.47 | 9118. | | #1 | . ಂខ3 | 0834 | 0004 | 3591 | 0327 | 001 | 0006 | | #2 | ~. ೦೦ ೬ ೦ | 2263 | 0011 | 6612 | 0458 | 0005 | .0006 | | Elem | 3 | LI | P | MC | SE | SR | SiO2 | | Units | PPM | PPM | PPM | FPM | PPM | PPM | PPM | | Avge | .0011 | 0041 | 0448 | 0061 | .0163 | .0000 | .0215 | | SDev | .0048 | .0023 | .1109 | .0029 | .0000 | .0000 | .0261 | | MESD | +85.7 | -56.57 | -247.5 | -47.17 | .2049 | .0000 | 121.3 | | 41
92 | 023
.045 | 0057 | .0334
1232 | 0041
0081 | .0163
.0163 | .0000 | .0399
.0031 | | Elem
Unite
Ryge
Elev
MRST | 6M
FFM
.0180
.0644
E5.87 | TL
PPM
.0264
.0394
126.6 | TI
PPM
0003
.0000
-1.138 | ZR
PPM
.0004
.0006
140.7 | | | | | #1
#2 | - 0135
.0825 | .050
.0028 | 0003
0003 | .0008
.0000 | | | | Method: ICAP1 Sample Name: CRI Operator: JM Run Time: 05/14/91 10:22:08 Comment: CRDL-1,LOT 3-40AS (SPEX) | Elem
Units
Avge
SDev
%RSD | AL
FPM
0093
.0272
-291.7 | SB
PPM
.1382
.0110
7.961 | AS
PPM
0047
.0547
-1155. | BA
PPM
.0000
.0000 | BE
PPM
.0105
.0000
.0403 | CD
FPM
.0093
.0014
14.92 | CA
PPM
.0178
.0108
60.83 | |---------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | #1 | .0099 | .1460 | .0339 | .0000 | .0105 | .0084 | .0254 | | #2 | 0286 | .1304 | 0434 | | .0105 | .0103 | .0101 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | PPM | PPM | PFM | PPM | | Avge | .0183 | .1059 | .0483 | 0019 | .0010 | 0090 | .0286 | | SDev | .0030 | .0038 | .0000 | .0013 | .0160 | .0364 | .0007 | | %RSD | 16.20 | 3.630 | .0043 | -67.94 | 1544. | -402.0 | 2.268 | | #1 | .0203 | .1086 | .0484 | 0029 | .0123 | .0167 | .0290 | | #2 | .0162 | .1032 | .0483 | 0010 | 0102 | 0348 | .0281 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | PPM | PFM | ppm | PPM | PPM | | Avge | .0837 | 5360 | .0197 | -1.097 | 0223 | .0979 | .0396 | | SDev | .0052 | .2695 | .0004 | 1.611 | .0387 | .0010 | .0000 | | %RSD | 6.218 | -50.28 | 1.944 | -146.8 | -173.1 | .9880 | .0455 | | #1 | .0875 | 3454 | .0195 | .0420 | .0050 | .0986 | .0396 | | #2 | .0802 | 7265 | .0200 | -2.237 | 0497 | .0972 | .0396 | | Elem | B | LI | P | MO | SE | SR | SiO2 | | Units | FPM | PPM | PPM | PPM | PFM | PPM | PPM | | Avge | .0052 | 0025 | 1361 | .0000 | .0683 | .0001 | .3322 | | SDev | .0048 | .0046 | .0370 | .0057 | .0501 | .0001 | .0129 | | %RSD | 91.99 | -138.6 | -27.21 | 157700. | 73.36 | 35.34 | 3.390 | | #1 | .0086 | 0057 | 1099 | 0041 | .329 | .0001 | ,3231 | | #2 | .0013 | .0008 | 1623 | .0041 | .1038 | .0002 | .3414 | | Elem
Units
Avge
SDev
WRSD | BN
6PM
.0045
.0127
281.3 | TL
P PM
.0279
.0358
128.3 | TI
PPM
.0003
.0009
293.8 | ZR
PPM
0027
.0016
-68.09 | | | | | #1
#2 | .0135
0045 | .0026
.0532 | 0003
.0009 | 0015
0038 | | | | Method: ICAP1 Sample Name: ICSA Run Time: 05/14/91 10:24:10 Comment: INT-A1,LOT 3-10AS (SPEX) | • | | | | | | | | |---------------------------------------|--|--------------------------------------|--------------------------------------
---|--|--------------------------------------|--| | Elem
Units
Avge
SDev
%ESD | AL
FPM
495.1
.7
.1355 | SB
FPM
.1147
.0181
15.77 | AS
PPM
4260
.0521
-12.24 | BA
PPM
.0080
.0000 | BE
PPM
0001
.0005
-461.2 | CD
PPM
0022
.0005
-24.25 | CA
PPM
502.4
.2 | | #1
#2 | 494.7
495.6 | .1275 | 3892
4629 | .0080
.0080 | .0002
0004 | 0018
0026 | 502.6
502.3 | | Elem
Units
Avge
SDev
%RSD | CR
PPM
.0000
.004
-10430. | CO
PPM
0035
.0064
-184.1 | CU
PPM
0096
.0019
-20.01 | FE
PPM
184.5
.4
.1950 | PB
PPM
.0394
.0070
17.70 | MG
PPM
511.3
.2
.0426 | MN
PFM
.0071
.0012
16.85 | | #1
#2 | .0026
0027 | .0010
0080 | 0109
0082 | 184.9
184.4 | .0443
.0344 | 511.4
511.1 | .0063
.0080 | | Elem
Units
Avge
SDev
%RSD | NI
PPM
.0061
.0298
484.7 | K
PPM
0834
.1684
-202.0 | AG
PPM
0003
.0007
-284.9 | NaHi
PPM
-1.433
.170
-11.89 | NaLo
ppm
.1830
.0087
4.764 | V
PPM
.0101
.0014
13.74 | ZN
PPM
0040
.0007
-18.74 | | 排1
#2 | 0149
.0272 | 2025
.0357 | 0008
.0003 | -1.313
-1.554 | .1891
.1768 | .0111
.0092 | 0045
0055 | | Elem
Units
Avgs
SDev
%RSD | 8
PPM
0574
.0078
-10.63 | EI
PPM
0008
.0000 | PPM
0761
.1045
-137.4 | MO
PPM
.0181
.0001
.2988 | SE
FPM
.3769
.0457
12.14 | SR
PPM
.0124
.0003
1.997 | 8102
PPM
.3563
.0073
2.052 | | #1
三 | 0429
0518 | 0008
0008 | ~.0022
1500 | .0182
.0181 | .4093
.3446 | .0122
.0124 | .3615
.3511 | | Elem
Unite
Avge
30e~
ARSS | 3N
FPM
.01 59
.0257
:61.5 | TL
PPM
.1760
.0845
48.00 | TI
PPM
0083
.0013
-55.33 | ZR
PPM
.0002
.0005
321.0 | | | | | 等主
律 己 | .0341
00 23 | .1163
.2358 | 0032
0014 | .0005
0002 | | | | | | | | | | | | | Method: ICAP1 Sample Name: ICSAB Operator: JM Run Time: 05/14/91 10:26:53 Comment: INT-A1,LOT 3-10AS & INT-B1,LOT 3-19AS (SPEX) | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------|----------------|-------| | Units | FFM | PPM | PPM | FPM | FFM | PPM | PPM | | Avge | 493.9 | .0922 | 4690 | .4786 | .4744 | .9274 | 498.5 | | SDev | 2.7 | .0293 | .0787 | .0013 | .0064 | .0166 | 7.6 | | %RSD | .5414 | 31.81 | -16.78 | .2721 | 1.351 | 1.788 | 1.519 | | #1 | 495.8 | .1130 | 5247 | .4795 | .4789 | .9391 | 503.9 | | #2 | 492.0 | .0715 | 4134 | .4777 | .4698 | .9157 | 493.2 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PFM | PFM | PPM | PPM | PPM | FPM | PPM | | Avge | .4448 | .4617 | .4507 | 182.7 | .9685 | 508.6 | .4541 | | SDev | .0044 | .0113 | .0019 | 2.2 | .0044 | 4.0 | .0063 | | %RSD | .9931 | 2.452 | .4224 | 1.192 | .4524 | .7794 | 1.376 | | #1 | .4480 | .4697 | .4521 | 184.3 | .9716 | 511.4 | .4585 | | #2 | .4417 | .4537 | .4494 | 181.2 | .9654 | 505.8 | .4497 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | FPM | PPM | PPM | ppm | PPM | PFM | | Avge | .8916 | 4288 | .9336 | -1.877 | .1421 | .4742 | .8908 | | SDev | .0143 | .2527 | .0102 | .656 | .0218 | .0059 | .0115 | | %RSD | 1.618 | -5 8. 93 | 1.087 | -34.97 | 15.33 | 1.238 | 1.291 | | #1 | .8717 | 2501 | .9407 | -1.412 | .1267 | .4783 | .8787 | | #2 | .8715 | 6074 | .9264 | -2.341 | .1575 | .4 7 00 | .8827 | | Elem | 5 | LI | P | MO | SE | SR | S102 | | Univs | PPM | PPM | PPM | PPM | FPM | PPM | PPM | | Avge | 0722 | 0015 | 1743 | .0200 | .4113 | .0125 | .2971 | | SDev | .0315 | .0012 | .1797 | .0033 | .0092 | .0002 | .0218 | | %RSD | -34.17 | -70.71 | -103.1 | 16.67 | 2.225 | 1.172 | 7.347 | | #1 | 0579 | 0008 | 0472 | .0224 | .4048 | .0125 | .3125 | | #8 | 1145 | 0025 | 3013 | .0176 | .4178 | .0124 | .2816 | | Elem
Units
Avga
SDev
XRSD | SN
PPM
0327
.0433
-131.4 | TL
PPM
.1813
.0364
20.05 | TI
PPM
0020
.0007
-36.46 | ZR
PPM
0014
.0010
-71.22 | | | | | #1
#2 | 0023
063 5 | .2070
.1 556 | 0015
0025 | 0007
0022 | | | | Method: ICAF1 Sample Name: CCV1 Run Time: 05/14/91 10:30:52 Comment: SOLUTION 041691 Mode: CONC Corr. Factor: 1 | | 5,10 | | • | | | | ··· | |-------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|---| | Elem
Units
Avge
SDev | AL
PPM
1.027
.017 | SB
PPM
2.045
.044 | AS
PPM
2.086
.011 | BA
PPM
1.002
.010 | BE
PPM
.9939
.0147 | CD
PFM
1.003
.008 | CA
PPM
51.23 | | #RSD | 1.684 | 2.141 | .5417 | .9962 | 1.480 | .7706 | .8657 | | #1
#2 | 1.014
1.039 | 2.014
2.076 | 2.094
2.078 | .9952
1.009 | .9835
1.004 | .9980
1.009 | 50.92
51.5 5 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | PPM | PPM | PPM | FPM | | Avge | .9962 | 1.024 | 1.001 | 1.076 | 1.005 | 25.24 | .9923 | | SDev
%RSD | . 0074
• 7449 | .005
.4976 | .08
.7690 | .006 | .031 | .24 | .0078 | | /1R3D | ./447 | .47/0 | • /670 | .5476 | 3.132 | .9402 | .7883 | | #1 | .9909 | 1.020 | .9959 | 1.071 | 1.027 | 25.07 | . 9868 | | #2 | 1.001 | 1.027 | 1.007 | 1.080 | .9827 | 25.41 | .9978 | | | | • | | | | | • | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | Avge | .9927 | 50.24 | .9220 | 52.11 | 48.78 | 1.012 | 1.997 | | SDev | .0241 | .32 | .0123 | .14 | .20 | .014 | .014 | | %RSD | 2.423 | .6370 | 1.331 | .2777 | .4120 | 1.375 | .6818 | | #1 | 1.010 | 50.01 | .9307 | 52.01 | 48.64 | 1.002 | 1.988 | | #E | . 9757 | 50.46 | .7133 | 52.22 | 48.72 | 1.021 | 2.007 | | | | | | | | | | | Elem | 3 | LI | P | MO | SE | SR | Si 02 | | Units | FFM | PPM | PPM | PPM | FFM | PPM | P'PM | | Avge | . 9848 | .9820 | 26.08 | 1.004 | 1.060 | 1.024 | .2906 | | āDe∨ | . 035 | .0046 | .01 | .011 | .031 | .009 | .0255 | | %RSD | .351 | .4710 | .0391 | 1.143 | 2.926 | .9037 | 8.774 | | # 1 | . 9 824 | .9787 | 25.07 | .9959 | 1.038 | 1.018 | .2725 | | #2
#2 | . 7873 | .9853 | 26.09 | 1.012 | 1.082 | 1.031 | .3086 | | . f tom | , , , , , | 1,000 | 20.07 | 1.01 | | 11001 | 10000 | | ឌី មកា | SN | TL | ΤI | ZR | | | | | Jni ta | FM | FFM | PPM | PPM | | | | | 45 0.8 | 5.017 | 10.17 | 1.007 | 1.523 | | | | | 3Dev | SEO. | .05 | .009 | .021 | | | | | MRSD | J352 | . 4554 | .8723 | 1.360 | | | | | | | | | | | | | | 林江 | 4.794 | 10.14 | 1.001 | 1.508 | | | | | #2 | 5.040 | 10.21 | 1.014 | 1.537 | | | | Method: ICAP1 Sample Name: CCB1 Run Time: 05/14/91 10:35:48 Operator: JM Comment: | Mode: Co | NC COIF. | Pactor: 1 | | • | | | · | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------| | Elem
Units
Avge
SDev
%RSD | AL
PPM
0031
.0090
-284.2 | SB
PPM
.0155
.0145
93.71 | AS
PPM
0031
.0329
-1057. | BA
PPM
.0000
.0000 | BE
PPM
.0003
.0009
274.0 | CD
PPM
0005
.0001
-24.34 | CA
PPM
.0153
.0000 | | #1 | .0032 | .0258 | .0201 | .0000 | .0010 | 0005 | .0153 | | #2 | 00 9 5 | .0052 | 0264 | | 0003 | 0004 | .0153 | | Elem
Units
Avge
SDev
%RSD | CR
PFM
0005
.0015
-278.6 | CO
PPM
0018
.0000
6169 | CU
PFM
.0007
.0000
.0725 | FE
PPM
.0448
.0033
7.286 | PB
PPM
0157
.0222
-141.0 | MG
PPM
.0120
.0108
90.14 | MN
PPM
0005
.0000 | | #1 | 0016 | 0018 | .000 7 | .0471 | 0314 | .0196 | 0005 | | #2 | .0005 | 0018 | .0007 | .0425 | .0000 | .0043 | 0005 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | Avge | 0037 | 5241 | .0022 | 9601 | 0250 | 0012 | .0000 | | SDev | .0227 | .1853 | .0015 | .2556 | .0054 | .0013 | .0007 | | %RSD | -617.4 | -35.36 | 70.99 | -26.63 | -21.76 | -112.2 | 137100. | | #1 | 0197 | 6551 | .0011 | 7793 | 0289 | 0021 | 0005 | | #2 | .0124 | 3930 | .0033 | -1.141 | 0212 | 0002 | | | Elem | B | LI | P | MO | SE | SR | SiO2 | | Units | PPM | Avge | .0002 | 0033 | 0859 | 0041 | .0385 | .0000 | .0133 | | SDev | .0096 | .0035 | .0000 | .0000 | .0231 | .0001 | .0059 | | %RSD | 4109. | -106.1 | 0158 | 2035 | 60.07 | 282.3 | 43.87 | | #1 | 00 65 | 0057 | 0860 | 0041 | .0549 | .0000 | .0092 | | #2 | .0070 | 0008 | 0859 | 0040 | .0222 | | .0175 | | Elem
Units
Avge
SDev
%RSD | SN
PPM
.0180
.0318
176.7 | TL
PPM
.0045
.0169
375.4 | TI
PPM
0003
.0009
-282.5 | ZR
PPM
.0008
.0011
142.1 | | | | | 辩1
#2 | 0045
.0404 | 0074
.0165 | 0009
.0003 | .0000
.0015 | | | | -.0314 -.0045 -.0154 -.0314 ž‡ 1 #2 Method: ICAP1 Sample Name: ICP-AT BLANK Operator: JM Run Time: 05/14/91 10:43:17 190591 B Comment: ICP-AT Mode: CONC Corr. Factor: 1 Elem AL SB AS BE BA CD CA FFM PPM Units PPM PPM PPM PPM PPM Avge .0015 .0052 -.0559 .0000 E000. -.0003 .0918 SDev .0429 .0220 .0244 .0000 .0009 .0013 .0000 %RSD 2769. 426,1 -43.67 .0000 269.3 -393.2 .0046 #1 -.0288 -.0104 -.0387 .0000 -.0003 -.0013 .0918 #2 .0319 .0207 -.0732 .0000 .0010 .0006 .0918 Elem CR CO CU PB FE MG MN FPM Units FPM FFM PPM PPM PPM FPM -.0042 -.0009 .0007 Avge
.0471 -.0023 .0291 -.0005 .0022 SDev .0013 .0019 .0013 .0031 .0036 .0000 %RSD -53.32 -142.0283.2 2.772 -138.0 12.43 -.7048 #1 -.0026 .0000 -.0007 .0462 -.0045 .0317 -.0004 #2 -.0058 -.0018 .0020 .0480 -.0001 .0265 -.0005 Elem NI ZN K AG NaHi NaLo Units PPM PPM PPM PPM ppm PPM PPM Avge -.0064 -.1191 .0005 -.1428 .1363 -.0019 .0113 SDev .0020 .2527 .0008 .0004 .0008 .3406 .0180 %RSD -19.45-30.43 -212.1 142.5 -238.4 13.18 6.915 #1 -.0078 .0596 .0000 .0980 .1491 -.0016 .0108 -.3837 -.0021 #2 -.0050 -.2978 .0011 .1236 .0119 Elem 3 MO SE SR Si 02 LI PPM PPM PPM FPM Units PPM PPM PPM .0000 .0081 Avge -.0049 -.0262 .0113 .0001 .2251 .0001 .0072 SDev .0080 .0012 .0057 .0231 .1056 %RSD 98.iS -23.57 -402.8 87200. 203.3 35.36 3.195 #1 .0138 -.0057 -.1009.0041 -.0050 .0001 .2201 #5 .0025 -.0041 .0485 -.0041 .0277 .0002 .2302 Elem SN TL ΤI ZR PPM Units FFM PPM PPM -.0180 -.0234-.0012-.0004 Avge .0190 SDev .0113 .0004 .0005 %RSD -105.9-48.43 -35.71 -137.5 .0000 -.0008 -.0015 -.0009 Barrell College . #1 #2 4.656 4.602 -.0343 .0076 -.0025 -.0019 Method: ICAP1 Sample Name: ICP-AT DCS Operator: JM Run Time: 05/14/91 10:44:44 090591 B Comment: ICP-AT Mode: CONC Corr. Factor: 1 Elem AL SB AS BA BE CD CA F'PM Units PPM PPM PPM PPM PFM PPM Avge 1.856 .5002 1.963 1.875 .0493 .0475 98.26 SDev .032 .002 .0146 .055 .71 .0000 .0014 %RSD 1.705 2.917 2.807 .1158 .0001 2.987 .7193 #1 1.879 .5105 1.924 1.873 .0493 .0485 98.76 #2 1.834 .4899 2.002 1.876 .0493 .0465 97.76 Elem CR CO CU FΕ PB MG MN Units PPM PPM F'F'M PPM PPM PPM PPM .1893 .4797 .9738 Avae .2390 .4905 50.64 .4725 SDev .0022 .0000 .0019 .0072 .0222 .11 .0007 %RSD 1.177 .0001 .8065 .7378 4.524 .2129 .1380 #1 .1909 .4797 .2376 .9788 .5062 50.72 .4730 #2 .1878 .4797 .2404 .4748 50.57 .9687 .4720 Elem NI ĸ AG ZN NaHi NaLo FPM PPM Units PPM PPM ppm PPM PPM Avge .4695 48.50 .0513 99.41 93.29 .4698 .4813 SDev .0013 .0002 .08 .0004 .0040 .16 .12 %RSD .2720 .1736 .7480 .1625 .1238 .0395 .8323 #1 48.44 .4686 .0511 99.52 .4699 93.21 .4841 #2 .4704 48.56 .0516 99.30 93.37 .4697 .4785 Elem В LI MO SE SR Si02 Units PPM PPM PPM PPM FFM PPM PPM Avge .0165 -.0025 .0225 .2969 -.0638 -.0089 -.0027 .0032 .0046 SDev .0421 .0029 .0731 .0000 .0072 %RSD 19.06 -188.6-65.97 -32.40 -2705. .0000 2.423 #1 -.0936 .0143 -.0057 -.0068 -.0544 .0225 .2918 #2 .0188 8000. -.0341-.0109.0490 .0225 .3020 Elem SN TL TI ZRUnits PPM PPM FFM PPM Avge 4.629 -.0133 -.0022 -.0015SDev .038 .0297 .0004 .0005 **%RSD** .8227 -222.2 -i8.13 -36.31 -.0011 -.0019 dethod: ICAP1 Sample Name: ICP-AT DCS 090541 B Operator: JM Commant: ICP-AT | Elem | AL | SB | AS | BA | BE | CD | CA | |--|-------------------------------------|--------------------------------------|--|--------------------------------------|----------------|--------|----------------| | Units | FFM | PPM | PPM | PPM | FPM | PPM | PPM | | Avge | 1.738 | .4923 | 1.812 | 1.770 | .0466 | .0445 | 93.18 | | SDev | .014 | .0256 | .108 | .009 | .0005 | .0017 | .70 | | MRSD | .7785 | 5.193 | 5.932 | .5151 | .9977 | 3.775 | .7508 | | #1 | 1.749 | .5104 | 1.888 | 1.776 | .0469 | .0457 | 93.67 | | #2 | 1.729 | .4742 | 1.736 | 1.763 | .0462 | .0433 | 92.68 | | Clem | CR | CO | CU | FE | PB | MG | MN | | Uniss | PPM | Avge | .1789 | .4572 | .2281 | .9230 | .4540 | 48.07 | .4490 | | SDev | .0007 | .0013 | .0019 | .0085 | .0032 | .18 | .0039 | | XRSD | .4081 | .2817 | .8453 | .9198 | .6968 | .3780 | .8702 | | #1 | .1794 | .4563 | .2295 | .9290 | .4563 | 48.20 | .4518 | | #紐 | .1783 | .4581 | .2267 | .9170 | .4518 | 47.94 | .4462 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | PPM | PPM | ppm | PFM | PPM | | Ayga | .4520 | 46.21 | .0493 | 94.57 | 88.03 | .4491 | .4588 | | SDey | .0052 | .05 | .0000 | .37 | .23 | .0004 | .0040 | | %RSD | 1.156 | .1093 | .0021 | .3954 | .2667 | .0788 | .8713 | | 第 1 | .4483 | 46.18 | .0493 | 94.83 | 8 8. 19 | . 4489 | .4617 | | 李高 | .4557 | 46.25 | .0493 | 94.30 | 87.86 | . 4494 | .4560 | | Elem | B | LI | P | MO | SE | SR | SiO2 | | Units | FPM | PPM | PPM | PPM | FPM | FPM | PPM | | Avge | .0130 | 0025 | 0333 | 0110 | .0185 | .0214 | .2855 | | SDev | .0014 | .0046 | .0211 | .0057 | .0115 | .0003 | .0116 | | URBD | 11.79 | -188.6 | -63.36 | -52.35 | 62.29 | 1.159 | 4.058 | | # <u>#</u> | .0119 | .0008 | 0164 | 0150 | .0104 | .0215 | .2937 | | # 2 | | 0057 | 0482 | 00 6 9 | .0266 | .0212 | .2 7 73 | | I.en
Chills
Avge
BDev
1580 | SN
FPM
4.405
.025
.5766 | TL
PPM
.0200
.0433
215.7 | TI
PPM
0021
.0000
-1.127
0021 | ZR
PPM
.0004
.0000
1.271 | | | | | #2 | 4.387 | 0105 | 0021 | .0004 | | | | Method: ICAP1 Sample Name: 1363704 Run Time: 05/14/91 10:49:06 Comment: ICP-CLPR-A | Elem
Units
Avge
SDev
%RSD | AL
PPM
.0400
.0293
73.14 | SB
PPM
.0000
.0146
30000. | AS
PPM
0016
.0045
-287.7 | BA
PPM
.0055
.0000 | BE
PPM
.0010
.0000 | CD
PPM
0007
.0007
-93.88 | CA
PFM
.2853
.0216
7.583 | |---|---|---|---|---|--|--------------------------------------|--| | #1
#2 | .0193
.0607 | 0103
.0104 | .0016
0048 | .0055 | .0010 | 0012 | .3006
.2700 | | Elem
Units
Avge
SDev
%RSD | CR
PPM
0005
.0045
-836.4 | CO
PPM
.0025
.0013
51.75 | CU
PPM
.0062
.0019
31.27 | FE
PPM
2.598
.007
.2516 | PB
PPM
.0018
.0158
880.4 | MG
PPM
.1042
.0158
14.82 | MN
PPM
.0213
.0000 | | #1
#2 | .0026
0037 | .0016
.0034 | .0048
.0075 | 2.603
2.594 | .0130
0094 | .1174
.0951 | .0213 | | Elem
Units
Avge
SDev
%RSD | NI
PPM
.0063
.0007
10.60 | K
PPM
.1191
.1853
155.6 | AG
PPM
.0018
.0015
84.95 | NaHi
PPM
.2400
.3832
1 59. 7 | NaLo
ppm
.1648
.0289
17.51 | V
PPM
.0014
.0013
93.86 | ZN
PPM
.0153
.0008
5.170 | | #1
#2 | .0068
.0058 | .2501
0119 | .0007
.0029 | .5109
0310 | .1853
.1444 | .0024 | .0148
.0159 | | Elem
Units
Avge
SDev
%RSD | B
PPM
.0163
.0016
9.517 | LI
PPM
0025
.0069
-282.8 | P
PPM
0251
.1426
-567.5 | MO
PPM
.0005
.0000
.3522 | SE
PPM
.0415
.0155
37.23 | SR
PPM
.0004
.0001 | SiO2
PFM
.3440
.0158
4.604 | | #1
#2 | .0152
.0174 | 0074
.0025 | .0757
1260 | .0005 | .0525 | .0004
.0005 | .3328
.3552 | | Elem
Units
Avge
SDev
%RSD
#1 | SN
PFM
.0045
.0000
.2639
.0045 | TL
PPM
.0364
.0234
64.18
.0199 | TI
PPM
.0009
.0000
.2370
.0009 | ZR
PPM
.0015
.0011
75.78
.0022 | | | | Method: ICAP1 Sample Name: 1363704S Run Time: 05/14/91 10:51:11 Comment: ICP-CLPR-A | Elem
Units
Avge
SDev
%RSD | AL
FPM
1.856
.041
2.189 | SB
PPM
.5106
.0000 | AS
PPM
1.965
.022
1.134 | BA
PPM
1.883
.010
.5304 | BE
PPM
.0501
.0005
.9625 | CD
PPM
.0455
.0007
1.615 | CA
PPM
99.75
1.14 | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | #1 | 1.828 | .5106 | 1.981 | 1.876 | .0505 | .0450 | 98.95 | | #2 | 1.885 | .5106 | 1.949 | 1.890 | .0498 | | 100.6 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | PPM | PPM | PPM | PFM | | Avge | .1946 | .4894 | .2445 | 3.531 | .5149 | 51.40 | .4980 | | SDev | .0007 | .0064 | .0019 | .022 | .0001 | .47 | .0059 | | %RSD | .3723 | 1.306 | .7894 | .6291 | .0281 | .9192 | 1.177 | | #1 | .1941 | .4849 | .2431 | 3.515 | .5148 | 51.06 | .4938 | | #2 | .1951 | .4939 | .2458 | 3.547 | .5150 | 51.73 | .5021 | | Elem
Units
Avge
SDev
%RSD | NI
PPM
.4831
.0000
.0020 | K
PPM
49.52
.25 | AG
PPM
.0532
.0019
3.630 | NaHi
PPM
101.5
1.2
1.204 | NaLo
ppm
93.78
.84
.8945 | V
PPM
.4837
.0021
.4353 | ZN
PPM
.4859
.0048
.9825 | | #1 | .4831 | 49.34 | .0518 | 100.4 | 93.18 | .4824 | .4825 | | #2 | .4831 | 49.70 | .0545 | 102.3 | 94.37 | .4853 | .4893 | | Elem | B | LI | P | MO | SE | SR | SiO2 | | Units | PPM | FPM | FPM | PPM | PPM | PPM | PPM | | Avge | .0236 | .0000 | 0741 | 0003 | .0331 | .0233 | .5315 | | SDev | .0049 | .001 | .0633 | .0086 | .0194 | .0003 | .1274 | | %RSD | 20.67 | -1324e6 | -85.42 | -2950. | 58.74 | 1.276 | 23.97 | | #1 | .0201 | 0008 | 1189 | .0058 | .0193 | .0231 | .4414 | | #2 | .0270 | .0008 | 0294 | 0064 | .0468 | .0235 | .6216 | | Elem
Units
Avge
SDev
%RSD | SN
FPM
4.737
.076
1.609 | TL
PPM
.0600
.0232
38.66 | TI
PPM
0009
.0013
-142.6 | ZR
PPM
.0019
.0000 | | | | | #1
#2 | 4.683
4.791 | .0436
.0764 | 0019
.0000 | .0019
.0019 | | | | - 11 - -- Method: ICAP1 Sample Name: 1363704D Run Time: 05/14/91 10:55:32 Comment: ICP-CLPR-A Mode: CONC Corr. Factor: 1 | Elem
Units
Avge
SDev
%RSD | AL
PFM
.0064
.0271
421.4 | SB
PPM
.0181
.0110
60.71 | AS
PPM
0231
.0174
-75.18 | BA
FPM
.0000
.0000 | BE
PPM
.0010
.0000 | CD
PPM
0016
.0006
-38.50 | CA
PPM
.2037
.0072
3.540 | |---------------------------------------|--------------------------------------|--------------------------------------
---------------------------------------|--|--|--------------------------------------|--------------------------------------| | #1
#2 | .0256
0127 | .0259 | 0108
0354 | .0000 | .0010 | 0011
0020 | .2088 | | Elem
Units
Avge
SDev
%RSD | CR
PPM
0032
.0007
-23.14 | CO
PPM
.0043
.0013
29.85 | CU
PFM
.0041
.0010
23.47 | FE
PPM
2.580
.020
.7853 | PB
PPM
.0019
.0031
164.3 | MG
PPM
.0779
.0097
12.46 | MN
PPM
.0204
.0000 | | #1
#2 | 0026
0037 | .0034
.0052 | .0048
.0034 | 2.594
2.565 | .0041
0003 | .0848
.0711 | .0204
.0204 | | Elem
Units
Avge
SDev
%RSD | NI
PPM
0029
.0032
-112.0 | K
PPM
0357
.1684
-471.4 | AG
PPM
.0018
.0000
.3129 | NaHi
PPM
.3773
.0411
10.89 | NaLo
ppm
.0901
.0016
1.813 | V
PPM
.0014
.0010
68.66 | ZN
PPM
.0064
.0008
12.26 | | #2
Elem
Units
Avge
SDev | 0052
B
PPM
.0173
.0033 | .0834
LI
PPM
0016
.0012 | .0018
P
PPM
0587
.0634 | .3482
MG
PPM
.0004
.0057 | .0913
SE
PPM
.0250
.0153 | .0007
SR
FPM
.0005
.0001 | .0058
SiD2
PPM
.3552 | | %RSD
#1
#2 | 19.06
.0196
.0150 | -70.71
0008
0025 | -108.0
1035
0139 | 1292.
0036 | .0142
.0358 | .0005 | 5.708
.3696 | | Elem
Units
Avge
SDev
%RSD | SN
FFM
.0180
.0191 | TL
PPM
.0636
.0128
20.19 | TI
PPM
.0000
.0004
18550. | ZR * PPM .0007 .0000 | | , ,,,,,, | . 6707 | | #1
#1 | .0314
.0045 | .0727
.0545 | .0003
0003 | .0007
.0007 | | | | #2 2.597 8.577 .0602 -.0017 CA lethod: ICAF1 Sample Name: ICP-SD BLANK Operator: JM iun Time: 05/14/91 10:58:32 090591 C Comment: ICP-SD lode: CONC Corr. Factor: 200 aL Elem SB AS BA BE CD Units FFM PPM FFM PPM FFM F'E'M Avge -3.526 3.099 -5.568 .0000 .0666 -.3548 PPM 10.71 SDev .464 1.461 9.218 .0000 .1387 .1106 2.16 KRSD -13.1747.15 -165.5 .0000 283.2 -31.18 EQ.19 # 1 -3.854 .9499 4.132 .0000 -.2765 -.0568 12.24 #2 -3.198 2.066 -12.09.0000 .2000 -.4330 9.181 Elem CR CO CU FE PB. MG MIN Units FFM FPM PPM FFM PPM FFM FFM ો∨ge -.4202 .0008 .1362 3.727 -1.338 .6817 .0007 .7438 SDav .0006 .0006 .653 1.897 .2451 .1297 **ARSD** -177.0 90.84 .4019 17.23 -141.3 35.95 13850. #1 .1058 4.249 .0003 .1358 -2.579 .3550 --.0908 #2 -. 9461 .0012 .1365 3.326 .5084 .0927 .0040 Elem NI K AG NaHi NaLo V ZN Units PPM PPM PPM PPM PPM PPM mqq .7925 Avge -.8328 -16.67 -.1088 -67.59 -2.311 -.1866 SDev 1.0391 40.43 .0021 59.29 2.070 .3371 .0032 **%RSD** -124.8 -242.4 -1.911-87.71-89.57 -180.6 .4078 #1 -.0981-45.26 -.1074-25.57-3.775.0517 ,790a #2 -1.568 11.91 -.1103 -109.5 --.4250 .7747 -.8474 Hem В LΙ F SR MO SE 2102 FFM Units PPM PPM PFM F'F'M FFM FEM Avge .0170 -.4906 -16.44 .0003 7.562 .0210 21.08 .0020 .58 **SDev** .0000 3.18 1.149 1.525 .0000 KRSD 11.79 .0000 -19.32335700. 19.90 .0000 2.752 -18.69 .0184 -.490a 6.384 .0210 F1.49 # 1 .8127 20.57 ¥Ξ .0155 -.4906 -14.20 -,3120 8.740 .0210 Elem BN. TL ΤI ZR FFM FFM FPM FPM Units 4.491 3.013 Avqe -,1212-.1552 SDev 2.537 .940 .2566 .2171 MRSD 56.49 11.74 -211.7 -139.9ŧί -.3026 a.254 7.348 -.3088 | lommerst: | : 05/14/91
ICP-8 | 11:10:22 | me: ICF-3
0905 9 | | Operator: JM | | | | |---------------------------------------|--|--------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|---------------------------|--| | ୍ଦ େ: ଅପ | MC Corr. | Factor: 1 | 00 | | | | | | | Elem
Iniva
Avge
BDev
ARSD | AL
PPM
1 83.6
9.3
5.047 | SB
PFM
50.80
.37
.7369 | AS
PFM
199.1
.6
.3040 | BA
PFM
186.2
.5
.2799 | BE
PPM
4.730
.089
1.891 | CD
FFM
4.615
.190
4.111 | CA
PPM
9789.
61. | | | 후1 | 170.1 | 50.53 | 199.6 | 186.5 | 4.666 | 4.749 | 9745. | | | #결 | 17 7. 0 | 51.06 | 198.7 | 185.8 | 4.793 | 4.481 | 9832. | | | Slem
Units
Avge
SDev
ARSD | CR
PPM
19.46
.22
1.144 | CO
PPM
48.88
.24
.5240 | CU
PPM
24.04
.19
.8008 | FE
PPM
94.70
.33
.3456 | FB
FFM
49.08
2.87
5.841 | MG
FFM
5066.
2.
.0432 | MN
FFM
47.57
.26 | | | # 1 | 19.62 | 4 8. 70 | 24.17 | 94.47 | 47.05 | 3045. | 47.39 | | | #3 | 19.30 | 49.06 | 23.90 | 94.93 | 51.10 | 3048. | 47.76 | | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | | Units | PPM | PPM | FPM | PPM | ppm | FFM | PPM | | | Avge | 47.50 | 4876. | 5.107 | 9985. | 7234. | 47.35 | 47.22 | | | SDev | 1.43 | 25. | .075 | 8. | ii. | .28 | .24 | | | %RSD | 3.012 | .5181 | 1.476 | .0799 | .1186 | .5935 | .5152 | | | 41 | 44.49 | 4874. | 5.160 | 7970. | 9241. | 47.15 | 47.40 | | | | 4 3.5 1 | 4858. | 5.054 | 9 97 9. | 9226. | .47 .35 | 47.05 | | | Elem | 8 | LI | P | MO | SE | SR | S182 | | | Units | FPM | PPM | PPM | FPM | FPM | PPM | FFM | | | Avge | .7594 | 3271 | 3.690 | 0873 | 0220 | 2.216 | 55.19 | | | SDev | .3192 | .1156 | 1.582 | .2677 | 3.8561 | .010 | .00 | | | KRSI | 33.27 | -35.36 | 42.87 | -32.42 | -17540. | .4468 | .053 | | | 41 | 1.185 | | 4.208 | -1.091 | -2.749 | 8.209 | 55.19 | | | • 82 | 7867 | | 2.571 | 6838 | 2.705 | 2.2 23 | 55.18 | | | .nite | 50
7FH
465.4
7.3
.24E7 | TL
PPM
2.902
3.155
008.7 | TI
PPM
8210
456
-80.48 | 2R
PPM
0724
.055%
-76.07 | | | | | | #1
#8 | 48 4. 3 | 5.132
.6708 | 2532
1887 | 033 5
1113 | | | | | Avge ರಿD⊜೪ .KSD # i # € 481.3 3739 482.7 480.0 1.9 1.117 1.902 170.4 2.462 --.2285 -.3144 -1.700 -.3107 -.3132 .0053 -.1122 -96.05 -.1884 -.0360 .1077 dethod: ICAP1 Sample Name: ICF-S DCS Operator: JM Run Time: 05/14/91 11:13:47 090591 Comment: ICP-S Gode: CONC Corr. Factor: 100 Elem AL SB AS BA BE CD CA Units FFM PFM PPM PPM PPM PPM FFM 186.4 4.699 apve 50.27 199.7 185.8 4.426 9712. SDev .7 1.10 5.1 1.6 .137 .057 141. MRSD .3671 2.186 2.529 .3410 2.921 1.284 1.452 #1 135.9 51.05 203.3 187.0 4.796 4.466 9812. #2 186.9 49.49 196.2 184.7 4.602 4.386 7613. Elem CR CO CU PB FE MG MN Units FFM PPM: FFM FFM PFM F'F'M PPM Avge 19.14 48.43 23.49 94.79 48.39 5028. 46.93 ∃De∨ .37 .64 .19 .85 .65 30. .65 %RSD 1.932 1.318 .8210 .8958 1.352 .5879 1.388 #1 19.41 48.88 23.43 95.39 48.85 5049. 47.39 2# 19.88 47.97 47.93 23.35 94,19 5007. 46.47 Elem NI AG V NaHi NaLo ZN Units PPM FFM PPM PPM ppm FFM PPM 45.94 9872. Avge 4813. 4.889 9159. 47.11 46.72 SDev .52 13. .076 8. 113. .16 .10 **4RSD** 1.128 .2800 1.556 .0830 1.235 .3354 .2063 41 46.30 47.18 4823. 4.835 9878. 7237. 46.33 #2 45.57 4803. 4.942 9079. 9866. 47.04 46.61 £lem LI Р DN SE SR 3102 Units FFM PPM FFM FFM FFM PFM FFM Avge .6229 -.2453 -15.32 -.2796 2.435 2.184 17.20 SDev .025 .1596 .2313 .381 .43 1.06 .5733 %RSD 25.43 -94.28 -6.918 -205.0 15.63 1.133 2.525 .7358 -.4088 2.202 17.31 # 1 -16.07 -. 6350 2.166 非芒 .5100 -.0818 -14.57 .1258 €.704 2.167 16.90 11 ± 0 BN TL TI ZR Jmi ts FFM PPM FFM FFM dethod: ICAP1 Sample Name: 1363701 Operator: JM Sun Time: 05/14/91 11:22:29 lomment: ICF-CLPR-S dode: CONC Corr. Factor: 200 SB Elem AL AS BA BE CD CA Units FFM PPM FFM PPM PPM F'F'M PPM avge 5535. 6.185 -9.199 .1659 18.79 .2273 614.8 SDev 43. .018 .00 2.034 .0026 .5280 2.9 .7754 **%RSD** .2972 -22.11 232.3 .0000 1.545 .4692 5565. #1 6.198 -10.6418.79 .1641 .6007 616.9 #2 5504. 6.172 -7.760 18.79 .1678 -.1460 612.8 Œlem CR CO CU FE PR MG MN Jnits PEM FFM FFM PPM PPM PFM PPM Avge .4079 .8130 10.70 55280. 1537. 143.8 4.883 .0097 1.024 SDev .39 1. 106. 4.4 .133 ARSD 2.368 125.9 3.605 .0661 .1915 3.034 2.722 #1 .4011 1.537 10.43 1537. 55350. 146.8 4.789 ા :⊇ 10.97 4.976 .4148 .0890 1534. 55200. 140.7 Elem NI v K AG NaLo ZΝ NaHi Units FPM PPM FFM PPM ppm PPM PFM Avge .5509 469.3 .8645 404.8 169.6 5.248 10180. SDev .0039 13.5 .6131 176.0 6.4 .264 31. %RED .6997 2.872 70.92 3.789 .3042 43.48 5.026 .5536 #1 478.3 .4310 529.3 174.2 5.434 10200. .5482 ;≠2 459.7 1.298 280.3 165.1 5.061 10160. P Elem Ξ LI MO SE SR 3102 Univa ₽₽M PPM FFM FFM F'PM FFM FFM 648.5 12.88 2.126 14.33 9.577 Avde 101.6 -.5444 3Dev .32 1.388 5.41 .030 . 7 8.3 .0002 .1335 MRSD 2.489 45.27 8.178 -.0348 37.77 .3101 95.72 9.578 547.9 \$ 1 13.11 1.145 -.5442 18.16 *2 12.66 3.107 107.5 -.5445 10.51 9.556 649.1 Elem 11.4 TL TI ZR PFM PM PPM PPM Unites Avge 11.13 17.05 66.59 7.192 BDev 4.37 14.71 .17 .000 WRED 27.02 36.28 .2544 .0008 * 1 3.571 6.649 66.47 7.192 #2 15.68 27.45 66.71 7.192 dethod: ICAP1 Sample Name: CCV-2 Operator: JM | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|---|------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------| | Units | PPM | FPM | PPM | PPM | PPM | FFM | FFM | | Avge | 1.006 | 2.058 | 2.077 | .9784 | .9751 | .9920 | 50.84 | | 3Dev | .010 | .018 | .002 | .0013 | .0045 | .0032 | .34 | | %R3D | .9874 | .8961 | .1031 | .1331 | .4635 | .3192 | .6596 | | #1 | 1.013 | 2.071 | 2.076 | .9793 | .9719 | .9897 | 50.40 | | #2 | .9985 | 2.044 | 2.079 | .9 7 74 | .9783 | .9942 | 51.08 | | Elem
Units
Avge
SDev
%RSD | CR
PPM
.9815
.0074
.7575 | CO
FPM
1.000
.000 | CU
FFM
.9912
.0010
.0969 | FE
PPM
1.022
.003
.3208 | PB
PPM
1.011
.003
.3122 | MG
PFM
25.21
.04
.1580 | MN
PPM
.7831
.052
.5304 | | #1 | .9762 | 1.000 | .9905 | 1.024 | 1.009 | 25.18 | .9794 | | #2 | .9867 | 1.000 | .9918 | 1.020 | 1.013 | 25.24 | .9968 | | Clem | NI | K | AG | NaHi | NaLo | V
 ZN | | Units | FPM | FPM | PPM | PPM | ppm | PFM | PPM | | Avge | .9740 | 49.55 | .9070 | 51.33 | 47.19 | .9978 | 1.781 | | SDev | .0324 | .05 | .0012 | .54 | .18 | .0057 | .008 | | %RSD | 3.330 | .1020 | .1331 | 1.046 | .3855 | .5659 | .4083 | | 01 | .9969 | 49.51 | .90 52 | 50.95 | 47.32 | .9928 | 1.975 | | #2 | .9510 | 49.58 | .9079 | 51.71 | 47.06 | 1.002 | 1.987 | | Elem | 3 | LI | P | MO | SE | SR | 3132 | | Units | PFM | PPM | PPM | PFM | PPM | PPM | PFM | | Avge | .9654 | .7526 | 25.72 | .9918 | 1.041 | 1.008 | .2 5 55 | | SDev | .0014 | .0046 | .17 | .0057 | .019 | .001 | .0039 | | %RSD | .1488 | .4856 | .6568 | .5771 | 1.852 | .0688 | 1.537 | | %1 | .9544 | .9493 | 25.60 | .9878 | 1.027 | 1.008 | . 2027 | | ∳2 | .9564 | .9558 | 25.84 | .9959 | | 1.009 | . 2082 | | Elem
Umits
Avge
Blev
URSD | SM
PPN
3.0 84
.0 55
.+995 | TL
PPM
10.11
.03
.2912 | TI
PPM
.9962
.0008
.0844 | ZR
PFM
1.519
.013
.5605 | | | | | #1
#2 | 5.066
5.102 | 10.14
10.09 | .9963
.9956 | 1.528
1.509 | | | | ethod: ICAP1 Sample Name: CCB-2 Jun Time: 05/14/91 11:39:03 Operator: JM | Elem
Unit
Avge
EDev
KRED | s PPM
0207
.0202 | SB
PPM
.0181
.0037
20.30 | AS
PFM
0418
.0043
-10.27 | BA
PPM
.0000
.0000 | BE
FPN
.0010
.0000
1.273 | CD
FFM
0004
.0013
-341.6 | CA
FPM
.00 24
.00 36
140.8 | | | | |--------------------------------------|--------------------------|---------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--|--|--| | #1
#2 | 0064
0350 | .0155
.0207 | 0387
0448 | .0000 | .0010
.0010 | .0005
0013 | .0000
.0051 | | | | | Clem
Unit
Avge
ODev
CRSD | s PPM
0047
.045 | CO
PPM
.0027
.0013
46.87 | CU
FFM
0007
.0000
3448 | FE
PPM
.0106
.0020
18.42 | PB
PFM
.0203
.0159
78.43 | MG
PFM
.0094
.0291
310.6 | MN
PPM
.0000
.007
51770. | | | | | *1
*温 | 007 9
0016 | .0013
.0034 | 0007
0007 | .0092
.0120 | .0090
.0315 | 0112
.0 3 00 | 0005
.0005 | | | | | Elem
Unit
Avge
SDev
%RSD | s FFM
0124
.0104 | K
PPM
1429
.2527
-176.8 | AG
PPM
.0019
.0004
20.01 | NaHi
PPM
.1070
1.014
948.4 | NaLo
ppm
0262
.0191
-72.79 | V
PPM
0012
.0017
-141.3 | ZN
PPM
.0063
.0016
25.03 | | | | | 71
42 | 0178
0051 | 3216
.0857 | .0022
.0016 | 6103
.8242 | 0377
0127 | 0024
.0000 | .0051
.0074 | | | | | Elem
Unit
Avge
3Dev
4RSD | s PPM
0022
.0064 | LI
PPM
.0000
.001
-1324e6 | P
PPM
0522
.0052
-10.00 | MO
PPM
0041
.0057
-141.5 | SE
PPM
.0436
.0155
35.46 | 8R
PPM
.0000
.0000 | 5102
PPM
0010
.0144
-1435. | | | | | #1
#2 | . 00 23
, 1047 | .0003
0008 | 0559
0485 | 00 81
.0000 | .3327
.3546 | , 0000
, 0000 | .0092
0112 | | | | | ilem
Avge
Avge
SDev
ASD | | TL
PFM
.0355
.0015
304 | TI
PPM
0009
-0009 | ZR
PPM
.0015
.0011
71.31 | | | | | | | | 31
42 | 0045
0045 | . 346
. 0344 | 0003
0015 | .0008
.0023 | | | | | | | | | | | | | | | | | | | ethod: ICAP1 Sample Name: 1363701 Pun Time: 05/14/91 11:41:29 .omment: ICF-CLFR-S | ode: Cu | NC COPP. | ractor: I | 000 | | | | • | |---------------------------------------|--|--------------------------------------|--------------------------------------|--|---------------------------------------|--------------------------------------|--------------------------------------| | Elem
Units
Avge
SDev
ARSD | AL
FFM
5 683.
68.
1.192 | SB
PPM
1.678
3.739
222.8 | AS
PPM
16.57
21.51
129.8 | BA
PPM
19.65
.00 | BE
PFM
.9696
.0127
1.308 | CD
PPM
8390
.6119
-72.93 | CA
PPM
637.3
14.4
2.263 | | 41
42 | 5730.
3 635. | 4.321
9658 | 31.79
1.361 | 19.65
19.65 | .9607
.9786 | 4064
-1.272 | 627.1
647.5 | | Elem
Units
Avge
SDev
ARSD | CR
PPM
-1.597
4.458
-279.2 | CO
PPM
1.535
.003
.2159 | CU
PPM
10.84
.96
8.894 | FE
PFM
1573.
3.
.1662 | PB
PPM
55780.
130.
.2329 | MG
PPM
155.0
16.7
10.91 | MN
PPM
4.776
.003
.0552 | | #1
#2 | -4.749
1.556 | 1.533
1.538 | 10.16
11.52 | 1571.
1575. | 55870.
55480. | 143.1
167.0 | 4.774
4.778 | | Elem
Units
Avge
SDev
4RSD | NI
PPM
-1.950
9.079
-445.5 | K
PPM
178.7
67.4
37.71 | AG
PPM
.6412
.0057
.8941 | NaHi
PFM
-526.3
892.3
-169.5 | NaLo
ppm
128.6
21.2
16.51 | V
PPM
2.811
1.307
46.51 | ZN
PPM
10560.
1. | | #1
#2 | 4,470
-8.370 | 131.0
226.3 | .6453
.6372 | -1157.
104.7 | 113.å
143.7 | 3.735
1.887 | 10560.
10 5 60. | | Elem
Units
Avge
3Dev
KRSD | S
PFM
12.37
6.40
51.78 | LI
PPM
1.635
1.156
70.71 | P
PPM
94.81
10.37
10.94 | MO
PPM
-3.787
.002
0653 | SE
FPM
62.62
42.38
67.68 | SR
FPM
9.206
.000. | S102
PPM
1435.
19.
1.308 | | +1
•=2 | 7.83 9
is.89 | .8177
2.453 | 37.48
102.1 | -3.78 5
-3.78 8 | 32.65
7 2.57 | 9.206
9.206 | 1448.
1482. | | ilen
Snics
Avge
Plav | 88
88M
36.32
6.38
38.84 | TL
PPM
59.87
10.69
17.95 | TI
FPM
67.44
.00 | ZR
PPM .
6.110
.009
.1429 | | | | | ∜.
∦2 | 12.00
21.03 | 67.43
52.32 | 67.44
67.44 | 5.103
5.116 | | | | tethod: ICAP1 Sample Name: 13637015 Operator: JM iun Time: 05/14/91 11:43:50 Comment: ICF-CLPR-S dode: CONC Corr. Factor: 1000 Slem AL. SB AS BA BE CD CA Units FEM PPM FPM FFM FPM PPM PPM Avge 4358. 100.0 10.44 427.9 401.5 8.495 21300. 102. 11.0 3Dev 2.7 1.7 EQ. 1.265 209. RSD 1.600 11.02 .6799 .4325 .2465 14.89 .7821 +1 6430. 107.8 425.3 402.8 10.42 7.601 21440. #2 6286. 92.24 430.0 400.3 10.45 9.389 21150. CR CO CU FΕ PB Elem MG MN FFM FFM PEM PPM PPM PPM Units FFM 102.5 121800. 10890. à∨de 41.85 54.62 1854. 105.3 .0 SDev 1.46 2.5 . ÖÖ 18. 1234. 92. **MRSD** 3.497 2.490 .0053 .9473 1.014 .0014 .8460 **#1** 122700. 10950. 105.3 42.39 104.3 64.62 1867. دے ہ 40.82 100.7 54.63 1842. 121000. 10820. 105.3 v ZΝ Elem ΝI ĸ AG NaHi NaLo FFM Units PPM PPM **CPM** PPM FFM ppm 104.6 8763. Avge 106.0 10850. 10.89 21480. 19190. .78 SDev 6.5 101. 46. 231. 3.0 85. .2128 2.869 .9662 %RSD 6.099 .9314 7.166 1.204 19350. 8823. 41 110.6 10920. 11.44 21520. 106.7 101.5 10.33 19030. 102.4 8704. :2 10780. 21450. SR Si02 Elem \mathbf{E} LΙ Ē MO SE FFM FFM FFM FPM PFM Univs FPM PPM 14.21 3748. Avge 3.875 82.42 -3.499 35.77 -.8177 22.86 .15 185. SDev .096 2.3127 127.4 5.749 RSD 1.082 -292.8 154.6 -164.3 63.91 1.045 4.945 .8177 172.5 19.51 14.32 3880. 8.763 .5664 -7.564 51.94 14.11 3617. 42 6.827 -2.453 -7.585 TL ZR -11em BMTI FFM PPM PPM FEM Josts 1090. 55.42 70.36 9.284 Avge 13. 5.35 1.29 1.087 BDev 9.651 KRED 1.15: 1.833 11.73 59.21 #1 1099. 71.29 10.05 #2 1081. 51.64 69.45 9.515 4ethod: ICAP1 Sample Name: 13637015 Eurn Time: 05/14/91 12:14:15 Comment: ICP-CLPR-S | | | \ | |---|-----|-----| | | _ 1 | 1 | | 1 | 101 | - 1 | | 1 | 101 | / | | • | _ | _ | | Elem
Units
Avge
SDev
%RSD | AL
FPM
6244.
50.
.8000 | SB
FPM
66.36
14.60
22.00 | AS
PPM
425.6
61.9
14.54 | 8A
PPM
402.1
.9
.2159 | BE
FFM
11.46
.06
.5203 | CD
PPM
11.68
2.43
20.79 | CA
PPM
21170.
72.
.3406 | |---------------------------------------|--------------------------------------|---|--|---|--|-------------------------------------|---------------------------------------| | #1
#2 - | 5280.
6209. | 56.04
76.68 | 381.9
469.4 | 401.5
402.8 | 11.42
11.50 | 9.762
13.40 | 21120.
21230. | | Elem
Units
Avge
EDev
%RSD | CR
PPM
41.33
4.44
10.74 | CO
PPM
102.5
7.7
7.502 | CU
FFM
61.22
.01 | FE
PPM
1828.
20.
1.071 | PB
PPM
121000.
418.
.3455 | MG
PPM
10690.
27. | MN
PPM
103.9
.0 | | #1
#2 | 4 4. 46
38.17 | 108.0
97.09 | 61.22 | 1814.
1842. | 120700.
121300. | 10 71 0.
10670. | 103.9
103.9 | | Elem
Units
Avge
SDev
%RSD | NI
FPM
91.88
11.61
12.64 | K
PPM
10810.
977.
9.034 | AG
PPM
5.977
4.584
76.70 | NaHi
PPM
20140.
1644.
B.163 | NaLo
ppm
18860.
214.
1.132 | V
PPM
79.23
7.20
7.254 | ZN
FFM
9623.
160. | | †1
 #2 | 83.47
100.1 | 11510.
10120. | 2.736
9.219 | 21300.
18 97 0. | 19010.
18710. | 104.3
94.14 | 8811.
88 3 4. | | Elem
Units
Avge
SDev
KRSD | 8
99M
6.482
22.26
343.5 | LI
FFM
-6.541
11.563
-176.3 | P
PPM
-70.93
369.59
-521.0 | MO
FPM
.5482
11.49
2096. | SE
FPM
62.76
15.15
24.13 | SR
PPM
14.00
.30
2.121 | S102
FPM
3680.
145.
9.939 | | #1
#2 | 22.23
-9.261 | -14.72
1.635 | 190.4
-332.3 | -7.578
8.675 | 73.47
52.05 | 13.79
14.21 | 3782.
357 7 . | | Elem
Units
Avge
SDev
SRSD | EN
FPM
1112.
(G. |
TL
PPM
-37.17
-96.19
-938.8 | TI
PPM
67.95
1.72
2.525 | ZR
PPM
6.768
9.297
97.27 | | | | | #1
#문 | 1103. | -10 5. 2
30.84 | 69.16
66.74 | 7.293
4.644 | | | | ethod: ICAP1 Sample Name: 1363701D Operator: JM Fun Time: 05/14/91 12:20:48 lomment: ICP-CLPR-S tode: CGNC | Corr. Factor: 1000 | Elem
Unita
Avge
SDev
RRSD | AL
FFM
6023.
38.
.6381 | SB
PPM
22.51
10.93
48.58 | AS
PPM
-10.98
17.79
-161.9 | BA
PPM
19.45
.00 | BE
PPM
.9392
.0163
1.733 | CD
FPM
-1.651
.716
-43.36 | CA
FPM
662.7
.0 | |---|--------------------------------------|--------------------------------------|--|--|---------------------------------------|---------------------------------------|-------------------------------------| | #1 | 60 50. | 14.78 | -23.56 | 19.45 | .9507 | -1.145 | 662.7 | | | 5 776. | 30.24 | 1.591 | 19.45 | .9277 | -2.158 | 662.7 | | Elem
Units
Avge
SDev
XRSD | CR
PPM
.3718
.0047
i.255 | CO
PFM
2.351
3.233
143.2 | CU
PPM
11.52
.00 | FE
PPM
2021.
2.
.0969 | PB
PPM
72030.
146.
.2085 | MG
PPM
200.5
1.2
.5941 | MN
PPM
5.773
.002
.0368 | | #1 | .3 485 | 5.0 65 | 11.52 | 2023. | 72140. | 199.6 | 5.771 | | #2 | .375 | 3625 | 11.52 | 2020. | 71 93 0. | 201.3 | 5.774 | | Elem
Units
Avge
SDev
MRSD | NI
PPM
.4791
5.205
766.5 | K
FFM
414.9
.0 | AG
PFM
.4091
.3761
91.93 | NaHi
PPM
214.8
248.4
115.6 | NaLo
ppm
113.2
27.8
24.53 | V
FPM
6.744
1.496
22.19 | ZN
FPM
10960.
3.
.0290 | | #1 | 4.360 | 416.9 | .5750 | 390.4 | 132.9 | 5.686 | 10970. | | #1 | -3.00 2 | 416.9 | .14 32 | 39.17 | 93. 59 | 7.802 | 10 96 0. | | Elem | 3 | LI | P | MO | SE | SR | 8102 | | Unica | PPM | PFM | PFM | PPM | PPM | PPM | 8PM | | Avge | 1 2.36 | .0000 | 53.94 | -1.678 | 37.09 | 9.171 | 1514. | | SDev | 3.1 7 | 1.156 | 79.07 | 2.868 | 38.51 | .050 | 124. | | XRSD | 85.84 | -1293e6 | 146.6 | -170.7 | 103.8 | .5398 | 8.223 | | 41 | 14.3 2 | 8177 | -1.970 | -3.70 6 | 9.863 | 9.208 | 142 6. | | 7运 | 11.10 | .8177 | t09.9 | .3501 | 64.38 | 9.13 6 | 1402. | | Colem
Charbs
Avge
Spen
LASO | 3N
8FM
91.30
85.39
19:2 | TL
PPM
79.05
16.71
21.13 | TI
PPM
94.95
.43
.4520 | 2R
PPM
8.794
.547
6.224 | | | | | #1
#2 | 39.26
3.347 | 67.23
90.86 | 95.25
94.64 | 9.181
8.407 | | | | Sethod: ICAP1 Sample Name: 1363702 Operator: JM Bun Time: 05/14/91 12:32:47 Comment: ICF-CLFR-S | Elem | AL | SB | AS | 9A | BE | CD | CA | |---------------------------------------|---|--------------------------------------|------------------------------------|-------------------------------------|---------------|---------------|----------------| | Units | FPM | PPM | PPM | PPM | FPM | FFM | FFM | | Avge | 8737. | .4842 | -5.715 | 7.183 | .1565 | .1901 | 162.5 | | EDev | 28. | 2.922 | 5.904 | .087 | .0044 | .0144 | 2.2 | | WRSD | .3260 | 603.5 | -103.3 | 1.209 | 2.817 | 7.587 | 1.331 | | #1 | 8717. | -1.582 | -1.540 | 7.122 | .1596 | .1799 | 161.0 | | #2 | 8757. | 2.551 | -9.889 | 7.245 | .1534 | .2003 | 164.0 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | FPM | FPM | PFM | PPM | PPM | FPM | PPM | | Avge | 6.295 | 1.195 | 2.615 | 1088. | 226.5 | 68.02 | 3.539 | | SDev | .148 | .512 | .192 | 5. | 3.8 | .96 | .000 | | %RSD | 2.348 | 42.82 | 7.343 | .4203 | 1.678 | 1.415 | .0076 | | #1 | 6.191 | .8331 | 2.479 | 1085. | 223.9 | 67.34 | 3.539 | | #2 | 6.400 | 1.557 | 2.751 | 1091. | 229.2 | 58.70 | 3.539 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | FFM | FFM | ppm | PPM | FFM | | Avge | 1.245 | 164.4 | .0797 | 128.9 | 37.75 | 5.706 | 321.7 | | S Dev | 1.308 | 60.6 | .1557 | 63.9 | 1.20 | .564 | 2.1 | | %RSD | 105.1 | 3 6. 89 | 1 97. 8 | 49.55 | 3.175 | 9.884 | .5464 | | #1 | 8.170 | 121.5 | 0314 | 83.72 | 36.90 | 5.307 | 320.3 | | #2 | .3197 | 207.2 | .1886 | 174.0 | 3 8.59 | 5.10 5 | 3 2 3.2 | | Elem | 8 | LI | P | MO | SE | SR | 5102 | | Un:ts | FPM | FPM | FPM | PPM | PFM | PPM | PPM | | Avge | 9.289 | 1.145 | 40.15 | -1.029 | 8.940 | 1.750 | 1066. | | SDev | .984 | .463 | 25.32 | .574 | 1.484 | .050 | 4. | | YRSD | 10.59 | 40.41 | 63.08 | -55.80 | 15.60 | 2.923 | .3516 | | #1 | 3.374 | .8177 | 58.05 | -1.435 | 9.990 | 1.715 | 1069. | | #2 | 9.7 95 | 1.472 | 22.24 | 6231 | 7.890 | 1.755 | 1063. | | Clem
Jouts
Dwgs
Toev
JRSD | SN
PPM
-3.455
-2.549
-73.74 | TL
PPM
17.26
11.87
58.75 | TI
PPM
93.32
.24
.3065 | ZR
PPM
5.910
.327
5.525 | | | | | #1
#2 | -1.653
-5.257 | 8.870
25.65 | 83.14
83.50 | 5.679
6.141 | | | | | | : 05/14/91
ICP-CLPR- | 12:35:20 | me: 136370
000 | sx serial D | ilution ope | rator: JM | | |---------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------| | Elem
Units
Avge
SDev
ARSD | AL
PPM
3723.
90.
1.034 | SB
PPM
3.037
3.705
122.0 | AS
PPM
-44.12
24.71
-56.00 | 9A
FPM
9.210
.000 | BE
PPM
.9482
.0144
1.515 | CD
PPM
-1.198
.045
-3.736 | CA
PPM
170.7
10.8
6.334 | | #1 | 9 659. | .4179 | -26.45 | 9.210 | .9380 | -1.229 | 178.3 | | #2 | 9787. | 5.657 | -61.40 | 9.210 | .9584 | -1.166 | 163.0 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | FPM | PPM | PPM | PPM | | Avge | 4.517 | 1.562 | 1.252 | 1090. | 231.1 | 87.34 | 2.251 | | SDev | 5.953 | 2.560 | 2.891 | 13. | 6.2 | 23.00 | .003 | | XRSD | 131.8 | 164.0 | 231.0 | 1.199 | 2.681 | 26.33 | .1323 | | #1 | 8.727 | 3.372 | 7926 | 1081. | 226.7 | 103.6 | 2.253 | | #2 | .3075 | 2489 | 3.296 | 1100. | 235.4 | 71.08 | | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PFM | PPM | FPM | FPM | ppm | PFM | PPM | | Avge | -5.190 | -47.64 | -1.554 | 33.61 | -2.696 | 4.973 | 324.0 | | SDev | .029 | 387.41 | .763 | 464.4 | 6.536 | 1.866 | .8 | | %RSD | 5660 | -813.2 | -49.10 | 1381. | -242.4 | 37.52 | .2520 | | #1 | -5.159 | 226.3 | -2.093 | 362.0 | 1.926 | 6.292 | 324.6 | | #2 | -5.200 | -321.6 | -1.015 | -294.8 | -7.318 | 3.654 | 3 2 3.4 | | Elem | B | LI | P | MO | SE | SR | SiO2 | | Units | PPM | PPM | PPM | FPM | PFM | PFM | PFM | | Avge | 8.855 | -3.271 | 20.75 | 2.217 | 31.32 | 1.715 | 1044. | | SDev | 4.740 | 1.156 | 31.70 | 8.611 | 3.91 | .198 | 19. | | XRSD | 53.53 | -35.36 | 152.8 | 388.3 | 12.50 | 11.54 | 1.792 | | #1 | .2.21 | -2.453 | -1.66B | a.306 | 28.54 | 1.575 | 1031. | | • #2 | 5.503 | -4.088 | 43.16 | -3.871 | 34.09 | 1.855 | 1057. | | Elem
Units
Avge
EDev
TRSD | SN
PPM
1.917
12.68
361.2 | TL
PPM
14.37
38.10
255.2 | TI
PPM
81.93
.85
1.040 | ZR
PFM
6.135
1.097
17.88 | | | | | #1
#2 | -7.0 47
10.28 | -12.57
41.31 | 81.33
82.54 | 6.910
5.3 59 | | | | dethod: ICAP1 Sample Name: CRI Operator: JM Run Time: 05/14/91 12:41:10 Comment: CRDL-1,LOT 3-40AS (SPEX) | Elem
Units
Avge
SDev
ARSD | AL
FFM
0219
.0134
-61.39 | SB
FFM
.1201
.0073
6.068 | AS
PFM
0420
.0286
-68.25 | BA
FFM
.0000
.0000 | BE
PPM
.0104
.0000
.0963 | CD
PPM
.0094
.0027
28.04 | CA
FPM
.0331
.0036
10.91 | |---------------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--| | #1 | 0124 | .1150 | 0622 | .0000 | .0104 | .0113 | .0305 | | #2 | 0314 | .1253 | 0217 | | .0105 | .0076 | .0354 | | Elem
Units
Avge
SDev
%RSD | CR
FFM
.0188
.0037
19.67 | CO
PPM
.1113
.0039
3.457 | CU
PFM
.0477
.0010
2.008 | FE
PFM
.0064
.0026
40.90 | PB
PPM
.0437
.0062
14.19 | MG
FPM
.0320
.0291
90.69 | MN
FPM
.0290
.0000 | | #1. | .0162 | .1086 | .0483 | .0082 | .0481 | .0115 | .0290 | | #2 | .0214 | | .047 | .0045 | .0394 | .0526 | .0290 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PFM | PPM | PPM | ppm | PPM | FPM | | Avge | .0770 | 0357 | .0227 | .5457 | 0273 | .1007 | .0425 | | SDev | .0071 | .1348 | .0000 | .9743 | .0044 | .0007 | .0008 | | %RSD | 9.271 | -377.1 | .0263 | 178.5 | -15.93 | .7029 | 1.942 | | *1 | .0821 | .0596 | .0227 | 1432 | 0243 | .1012 | .0417 | | #2 | .0720 | 1310 | .0227 | 1.235 | 0304 | .1002 | .0430 | | Elem
Units
Avge
SDev
KRSD | 8
PFM
.0109
.0032
29.04 | LI
-PPM
0025
.0000 | p
PPM
0091
.0687
-755.4 | MG
FPM
.0000
.0115
370200. | SE
PPM
.0139
.0040
29.47 | SR
PPM
.0001
.0001
70.71 | 8132
PPM
.3068
.00 59
11911 | | #1 | .00 87 | 0025 | 0577 | .0091 | .0147 | .0001 | .0155 | | #2 | .00 31 | 0025 | .0395 | 00 8 1 | .0111 | ,0000 | 3109 | | Elem
Unito
Avge
SEev
SEE | 8N
FPM
004 5
-0127
-888.7 | TL
PPM
.0754
.0030
3.939 | TI
PPM
0009
.0009
-92.33 | ZR
FPM
.0000
.0011
2273. | | | | | #1
#2 | 013 5
.0045 | .0775
.0733 | 0015
0003 |
0007
.0008 | | | | dethod: ICAP1 Sample Name: ICSA dun Time: 05/14/91 12:46:39 Jomment: INT-A1,LOT 34045 (SPEX) Hode: CONC | C3 | 7 | 7-70% | 5 |
4 | |------|---|----------------|------|-------| | Cont | | 1 ⊂ ⊤ (| C 17 | 1 | | Ilem | AL | SB | AS | 8A | BE | CD | CA | |---------------------------------------|---|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--| | Units | FFM | PPM | PPM | PPM | FFM | FPM | FFM | | A vge | 492.0 | .0 759 | 3250 | .0077 | 0004 | 0045 | 494.4 | | 3 Dev | 6.7 | .0 2 18 | .0803 | .0004 | .0001 | .0007 | 7.6 | | 4RSD | 1.253 | 28.76 | 24.71 | 5.657 | -14.19 | -14.70 | 1.535 | | #1 | 487.3 | .0913 | 3818 | .0074 | 0004 | 0049 | 489.1 | | #2 | 496.7 | .0604 | 2692 | .0080 | 0004 | 0040 | 499.8 | | Elem | CR | CC | CU | FE | PB | MG | MN | | Units | FPM | PPM | PPM | PPM | PPM | FFM | PPM | | Avge | 0031 | 0097 | 0082 | 182.3 | .0260 | 507.2 | .0087 | | 3Dev | .0064 | .0049 | .0020 | 2.3 | .0146 | 6.7 | .0010 | | %RSD | -211.9 | -51.16 | -24.69 | 1.282 | 56.16 | 1.362 | 11.87 | | #1 | 007 8 | 013 2 | 0067 | 181.2 | .0364 | 502.3 | .0094 | | #2 | .0016 | 0062 | 0096 | 184.5 | .0157 | 512.1 | .0079 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PFM | PPM | PPM | PPM | ppm | PPM | PPM | | Avge | .0011 | 5836 | .0010 | -3.059 | .1479 | .0059 | 000B | | SDev | .0046 | .5390 | .0006 | .086 | .0202 | .0064 | .0005 | | KRSD | 431.4 | -92.36 | 58.14 | -2.809 | 13.43 | 114.8 | -68.43 | | #1 | 00 22 | 7647 | .0006 | -3.120 | .:337 | .011 | 0004 | | #2 | .004 3 | 2025 | .0014 | -2.998 | .1622 | .0105 | 0012 | | Elem
Units
Avge
SDev
XRSD | 6
8PM
0574
.0004
6632 | LI
FFM
0025
.0000 | P
PPM
.0234
.1600
682.2 | MG
PPM
.0279
.0149
53.45 | SE
PPM
.1248
.0280
22.41 | SR
PPM
.0118
.0003
2.092 | 8102
PPM
.2589
.9060
2.310 | | #1 | -10877 | 0023 | .1365 | .0173 | .1050 | .0117 | . 2544 | | # E | -10871 | 0025 | 0897 | .0384 | .1446 | .01 2 0 | . 2531 | | Elem
Units
Avge
BDev
SRED | 5M
2 PM
06 80
.0474
hb7 | TL
PPM
.1820
.0394
31.74 | TI
PPM
0086
.0007
-87.77 | ZR
PP14
00 29
.00 26
8.88 | | | | | 81
#2 | 4345
1016 | .1540
.E099 | 0031
0021 | -,0047
0010 | | | | dethod: ICAF1 Sample Name: ICSAB Operator: JM Run Time: 05/14/91 12:49:35 Comment: INT-A1,LOT 3-10AS & INT-B1,LOT 3-19AS (SFEX) Mode: CONC Corr. Factor: 1 | Elem
Units
Avge
SDev
KRSD | AL
FFM
493.1
.8
.1553 | SB
PPM
.0662
.0072
10.91 | AS
PPM
2006
.0865
-43.14 | BA
PPM
.4657
.0022
.4661 | BE
FPM
.4698
.0009
.1975 | CD
PPM
.9351
.0043
.4562 | CA
PPM
496.8
.2 | |---------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------| | #1
#2 | 493.7
492.6 | .0611 | 2618
1394 | .4672 | .4704
.4691 | .9320
.9381 | 497.0
496.7 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PFM | FFM | FFM | PPM | PPM | PPM | | Avge | .4475 | .4599 | .4487 | 183.0 | .9891 | 510.5 | .4560 | | BDev | .0037 | .0038 | .0029 | .4 | .0343 | .4 | .0006 | | XRSD | .8266 | .8277 | .6454 | .2261 | 3.471 | .0759 | .1283 | | ‡1 | .4501 | .4626 | .4466 | 183.3 | 1.013 | 310.9 | , 4556 | | #2 | .4449 | .4572 | .4507 | 182.7 | .9648 | 510.4 | , 4564 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | PPM | FPM | ppm | PFM | PPM | | Avge | .8793 | 4288 | .9366 | -2.058 | .1271 | .4753 | .8913 | | SDev | .0150 | .3537 | .0011 | i.105 | .0136 | .0001 | .0017 | | %RSD | 1.705 | -92.50 | .1204 | -53.71 | 10.71 | .01 9 4 | .1920 | | #1 | .3899 | 1797 | .7359 | -1.276 | .1367 | .4752 | .3701 | | #2 | .3687 | 5789 | .9374 | -2.839 | .1175 | .4753 | .3925 | | Elem | B | LI | P | MO | SE | SR | S132 | | Inits | SPM | PPM | PFM | PP M | PPM | PFM | PFM | | Avga | 0515 | .0000 | 0529 | .0363 | .3046 | .0118 | .2 5 10 | | EDev | .0148 | .001 | .0586 | .0028 | .0118 | .0002 | .0 2 60 | | IRSD | -28.79 | -1324e6 | -110.3 | 7.669 | 3.888 | 1.679 | 10.34 | | 41 | 0410 | 0008 | 0114 | .0343 | .3130 | .0117 | . 2327 | | 43 | 0620 | .0008 | 0943 | .0383 | .2 7 62 | .0119 | . 2594 | | Elem
Unibs
Noge
BDav
NSD | 8N
F FM
.0:23
.0:60
49.50 | TL
PPM
.2055
.0854
41.56 | TI
PPM
0018
.0017
-96,43 | DR
FPM
0007
.0011
-159.8 | | | | | ∳1
÷2 | .0166
.0081 | .1451
.2659 | -,0030
-,0006 | .0001
0014 | | | | ethod: ICAP1 Sample Name: CCV3 Operator: JM un Time: 05/14/91 12:52:52 Comment: SOLUTION 041691 | Elem
Units
Avge
E Dev
VRSD | AL
2PM
1.062
.013
1.200 | SB
FPM
2.055
.022
1.066 | AS
PPM
2.121
.005
.2124 | BA
PPM
.9790
.0013
.1330 | BE
FFM
.9821
.0018 | CD
PPM
.9975
.0072
.7167 | CA
FFM
51.12
.14 | |---|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------| | #1 | i.053 | 2.071 | 2.125 | .9799 | .9808 | .9924 | 51.02 | | #2 | i.071 | 2.040 | 2.118 | .9781 | .9834 | 1.003 | 51.22 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PFM | PPM | PFM | PPM | FPM | | Nyge | .9930 | 1.019 | .9986 | 1.089 | 1.014 | 25.44 | .9886 | | 3Dev | .0045 | .001 | .0039 | .008 | .013 | .06 | .0013 | | KRSD | .4491 | .1242 | .38 5 5 | .7791 | 1.250 | .2284 | .1321 | | †1 | .98 9 9 | 1.018 | .9959 | 1.083 | 1.005 | 25.48 | .9877 | | ≋2 | .962 | 1.020 | 1.001 | 1.095 | 1.023 | 25.40 | .9896 | | Elem
Units
Avge
SDev
%RSD | RI
PPM
.9910
.0098
.9845 | K
PPM
50.32
.17
.3347 | AG
PPM
.9506
.0596
6.264 | NaHi
PPM
53.34
.13
.2416 | NaLo
ppm
47.16
.18
.3858 | y
PPM
1.013
.000 | ZN
PFM
1.999
.002
.0775 | | #1 | .9841 | 30.44 | .9085 | 53.43 | 47.03 | 1.012 | 1.598 | | :2 | .99 79 | 30.20 | .9927 | 53.25 | 47.29 | 1.013 | 2.000 | | Elen | 9 | LI | P | MO | SE | SR | S102 | | Units | 97M | PFM | PFM | PFM | PPM | PPM | PFM | | Avge | .9643 | .9452 | 25.57 | 1.018 | 1.025 | 1.011 | .2466 | | SDev | .0001 | .0012 | .10 | .003 | .027 | .002 | .0192 | | SRSD | .0102 | .1223 | .3914 | .2821 | 2.640 | .2378 | 7.303 | | # <u>;</u> | .9644 | .9444 | 25.74 | 1.016 | 1.006 | 1.013 | .2 30 0. | | #Œ | .9642 | .9460 | 25.59 | 1.020 | 1.044 | 1.010 | | | flom
Units
Avge
EDev
CRMD | 8N
PPM
5.085
.006
.2841 | TL
PPM
10.11
.03
.2685 | TI
PPM
.9996
.0004
.0421 | ZR
FPM
1.498
.012
.7998 | | | | | ⊧1
¢ä | 3.039
3.030 | 10.13
10.09 | .9999
.9993 | 1.506
1.489 | | | | dethod: ICAP1 Sample Name: CCB3 Run Time: 05/14/91 12:54:55 amment: | ioue: con | 4C COII. | ractur: 1 | | | | | | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Elem
Units
Avge
BDev
KRSD | AL
PPM
.0288
.0181
52.79 | SB
PPM
.0104
.0073
70.18 | AS
PFM
0329
.0131
-39.76 | BA
PPM
.0000
.0000 | BE
FPM
.0010
.0000
.1747 | CD
PPM
.0006
.0001
9.464 | DA
PPM
.0331
.0180
54.40 | | #1
#2 | .0160
.0415 | .0052
.0156 | 0421
0236 | .0000 | .0010
.0010 | .000 6
.0005 | .0459
.0204 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | FPM | FPM | PPM | FPM | PPM | PFM | | Avge | 0031 | .0054 | .0014 | .0933 | .0113 | .0204 | .0000 | | SDev | .0022 | .0025 | .0010 | .0013 | .0096 | .0204 | .007 | | %RSD | -70.85 | 47.17 | 70.66 | 1.400 | 84.55 | 100.1 | 3122. | | #1 | 0016 | .0072 | .0020 | .0943 | .0181 | .0352 | 3004 | | #2 | 0047 | .0036 | .0007 | .0924 | .0046 | .0040 | .0005 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | PPM | PPM | ppm | PFM | PPM | | Avge | .0096 | .0119 | .0045 | 6108 | 0258 | 0017 | .0056 | | SDev | .0078 | .3369 | .0015 | .0016 | .0044 | .0002 | .0008 | | %RSD | 80.74 | 2828. | 23.59 | 2666 | -16.89 | -10.48 | 14.78 | | #1. | .0151 | .2501 | .0074 | 60 9 6 | 0227 | 0016 | .ು ಽಂ | | #2 | .0041 | 2243 | .0054 | 6119 | 0287 | 0019 | .ು6೭ | | Elem | 6 | LI | P | HG | SE | SR | 9102 | | Units | PPM | PPM | PPM | FFM | PPM | PFM | 25M | | Avge | 0053 | 0008 | 0412 | .0021 | .0772 | .0004 | .082 | | SDev | .0032 | .0023 | .0422 | .0029 | .0077 | .0004 | .0217 | | XRSD | -50.44 | -282.8 | -102.3 | 140.2 | 10.03 | 38.50 | 266.5 | | * i | 00 8 3 | .0008 | 0114 | .0041 | .0827 | .0007 | .0285 | | #品 | 0041 | 0025 | 0710 | .0000 | .0717 | .0002 | 0072 | | Sien
Units
Avge
SDev
(RS) | 9N
PFM
.0180
.0190
106 | TL
PPM
.0499
.0489
67.98 | T:
PFM
.0003
.0000
1.535 | ZR
PPM
.0000
.000
-30.70 | | | | | \$2
\$1 | .0045
.0314 | .1044
.0353 | .0003
.0003 | .0000 | | | | | | | | | | | | | | | | , | 20 14 71 QE | 107138 FM |
page | |--|---|--|--|--------------------------------------|--| | lample N
4:07:56 | | AT BLANK
1 591 D | OF | perator: JM | | | Pactor: | i | | | | | | 3
9M
0181
0027
0.16 | AS
FPM
0622
.0466
-74.73 | BA
PPM
.0000
.0000 | BE
PPM
.0003
.0009
274.0 | CD
PFM
0012
.0014
-115.8 | CA
FPM
.1402
.0036
2.577 | | 0207
0156 | 0951
0292 | .0000 | .000 9
0003 | 0002
0082 | .1377
.1428 | | 3
FM
00 27
013
7.08 | CU
2FM
.0027
.0010
35.50 | FE
PPM
.0406
.052
12.84 | PB
PPM
.0180
.0190
105.5 | MG
PPM
.0223
.0133
59.73 | MN
PPM
.0009
.0007
70.39 | | 036
018 | .0020
.0034 | .0443
.0369 | .0315
.0046 | .0317
.0129 | .0014
.0005 | | °M
.1072
.0674
52.85 | AG
PFM
.062
.0011
18.10 | NaHi
PPM
.0860
.3394
394.7 | NaLo
ppm
.0193
.0104
53.74 | V
FPM
.0008
.0045
557.1 | ZN
PPM
.0175
.0000
.0311 | | .1548
05 96 | .054
.0070 | 1541
.3262 | .0266
.0119 | .0040
00 24 | .0175
.0175 | | -
M
.0008
.0000
-000 | P
PPM
06 33
.0105
-873.7 | MO
PPM
0020
.0086
-425.9 | SE
PPM
.0385
.0387
100.4 | SR
PPM
.0005
.0001
18.36 | S102
PPM
.1341
.0058
4.271 | | 0008
00 08 | -10813
0036 | .0041
0081 | .065 8
.0112 | 2000 5
000 4 | .1300
.1388 | | 196
588
15 9
. 74 | 51
68M
.001E
.0004
15.88 | 2R
FPM
-0008
-0000
-4405 | | | | | ଞ ୍ ୟ
ଟ71 | .0009
.0013 | 8000.
8000. | | | | page i Method: ICAP1 Sample Name: ICF-AT DCS Run Time: 05/14/91 14:10:21 14054 9 140591 P Operator: JM Comment: ICP-AT | | | _ | | | | | | |--|---------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------| | Elem
Units
Avge
SDev
%RSD | AL
8 PPM
1.820
.027
1.514 | SB
PPM
. 4877
.02 72
5.766 | AS
PFM
1.951
.090
4.627 | BA
FPM
1.864
.007
.3494 | BE
PPM
.0504
.0009
1.750 | CD
PFM
.0471
.0004
.8836 | CA
FFM
97.55
.39 | | #1 | 1.840 | .4693 | 1.887 | 1.968 | .0512 | .0468 | 97.82 | | #2 | 1.799 | .5106 | 2.015 | 1.859 | .0499 | .0474 | 97.28 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | FPM | PPM | PPM | PPM | PPM | PPM | PPM | | Avge | .1872 | .4860 | .2404 | .9650 | .5243 | 50.14 | .4753 | | SDev | .0067 | .0038 | .0000 | .0026 | .127 | .40 | .0020 | | %RSD | 3.568 | .7885 | .0001 | .2711 | 2.426 | .7998 | .4106 | | #1 | .1920 | .48 88 | .2404 | .966B | .5333 | 50.42 | .4766 | | #2 | .1825 | .4833 | .2404 | .9631 | .5153 | 49.35 | .4739 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Unit: | S PPM | PFM | PPM | PPM | ppm | FPM | FPM | | Avge | .4805 | 48.54 | .0511 | 96.93 | 91.34 | .4730 | .4937 | | SDev | .0052 | .37 | .0015 | 1.36 | .23 | .0040 | .0008 | | %RSD | 1.085 | .7635 | 2.972 | 1.402 | .2546 | .8394 | .1665 | | 計2 | .4842 | 48.80 | .0500 | 97.69 | 91.18 | .4758 | .4931 | | 計2 | .475 8 | 48.27 | .0521 | 95.96 | 91.51 | .4702 | .4943 | | Elem | 8 | LI | P | MO | SE | 3R | S102 | | Unite | FPM | PFM | PPM | FPM | PPM | FPM | FPM | | Avge | .0041 | 0033 | 0601 | 0028 | .0381 | .0218 | .1342 | | SDev | .0048 | .0012 | .0052 | .0000 | .0231 | .0002 | .0115 | | XRSD | 118.2 | -35.36 | -8.720 | 3497 | 60.51 | .6799 | 8.575 | | 沙1 | .0007 | 0025 | 0544 | 0028 | .0218 | .0219 | .1260 | | 排 2 | .0074 | 0041 | 0438 | 0028 | .0544 | .0217 | .1423 | | Elem
Jait
A vge
RDev
ATED | 4.327 | TL
PPM
0198
.0107
-84.84 | TI
PPM
0028
.0004
-15.68 | 2R
PPM
0004
.0000
-4.093 | | | | | 排上
排已 | %.845
4.809 | 0273
0122 | 0025
0031 | 0003
0004 | | | | | | | | | | | | | Method: ICAP1 Sample Name: ICP-AT DCS Operator: JM Run Time: 05/14/91 14:15:41 (4059) Comment: ICP-AT | Mode: UL | NC Corr. | Factor: 1 | | | | | | |---|--|---|--|---|---|---|---| | Elem
Unics
A vge
SDev
%RSD | AL
FPM
1.807
.075
4.130 | SB
PPM
.5105
.0000
.0048 | AS
PPM
1.965
.027
1.366 | BA
PFM
1.852
.003
.1875 | BE
FFM
.0506
.0009
1.844 | CD
PPM
.0471
.0032
6.729 | CA
FPM
98.40
.14 | | (#12)
#2(| 1.860
1.754 | .5105
.5106 | 1.946
1.984 | 1.855
1.850 | .0499
.0512 | .0448
.0493 | 98.30
98.50 | | Elem
Units
Avge
SD2V
%RSD | CR
3PM
.1883
.0022
1.183 | CO
PFM
.4843
.0039
.7944 | CU
PFM
.2404
.0000
.0005 | FE
PPM
.9594
.0013
.1365 | PB
PPM
.5019
.0254
5.063 | MG
PPM
50.57
.00 | MN
FFM
.4734
.0007 | | #1
特尼 | .189 9
.1867 | .4870
.4815 | .2404
.2404 | ,9585
,7604 | .5198
.4839 | 50. 57
50.57 | .4729
.4739 | | Elem
Units
Avge
SDev
%RSD
#1 | NI
PPM
.4708
.0097
2.062 | K
PPM
48.70
.03
.0692 | AG
PPM
.0521
.0015
2.939
.0511
.0532 | NaHi
PPM
99.24
.64
.6405
99.69 | NaLo
ppm
91.38
.22
.2355
91.53 | V
PPM
.4709
.0013
.2809
.4718
.4699 | ZN
PPM
.4931
.0000
.0061
.4932 | | Slow
Units
Avgs
SDev
WRSD | .4777
3
PPM
.0013
.0112
633.8 | 48.68
LI
PPM
0008
.0023
-282.8 | PPM
0843
.0001
1078 | MO
PPM
0068
.0000
0618 | SE
PPM
.0898
.0424
47.13 | SR
PPM
.0222
.0001
.4463 | 3102
FPM
.2007
.0015 | | | .00 97
0061 | 0025
.0008 | 0862
0864 | 0068
0068 | .0598
.1197 | .0221
.0222 | .E017
.1796 | | Elwa
dn. Va
Avge
Elev
WRED | 98
988
9.845
.036
.7553 | TL
PPM
.0162
.0396
244.1 | TI
PPM
0025
.0009
-34.46 | ZR
PPM
0011
.0011
-97.22 | | | | | #1
#1 | 4.872
4.819 | .0442 | 0017 | 0019 | | | | Method: ICAF1 Sample Name: 13891-01 Operator: JM Run Time: 05/14/91 14:22:04 Comment: ICP-AT | Elem | AL | SB | AS | 8A | BE | CD | CA | |---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--| | Units | PPM | FPM | PPM | FPM | PPM | FPM | PPM | | Avge | .0192 | .0077 | 0312 | .0028 | 0003 | .0001 | .1912 | | SDev | .0046 | .0183 | .0022 | .0039 | .0000 | .0007 | .0469 | | %RSD | 24.12 | 236.3 | -7.019 | 141.4 | -5.311 | 882.1 | 24.31 | | #1 | .0224 | .0207 | 0297 | .0055 | 0003 | .0006 | .2244 | | #2 | .0159 | 0052 | 0328 | | 0003 | 0004 | .1591 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | PFM | PPM | PPM | PPM | | Avge | 0011 | .0027 | .0048 | .0309 | .0202 | .0459 | .0009 | | SDev | .0052 | .0038 | .0000 | .020 | .0160 | .0344 | .0007 | | %RSD | -492.9 | 141.2 | .0255 | 6.341 | 78.98 | 55.20 | 70.12 | | #1 | .0026 | .0054 | .0048 | .0323 | .0315 | .0916 | .0014 | | #2 | 0047 | :0000 | .0048 | .0295 | .0089 | .0402 | .0005 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | PPM | PPM | ppm | PPM | 9PM | | Avge | 0078 | .0476 | .0044 | .5976 | .2149 | .0011 | .0154 | | SDev | .0091 | .1853 | .0008 | .8909 | .0430 | .0015 | .0000 | | %RSD | -115.9 | 388.9 | 17.44 | 149.1 | 20.02 | 139.8 | .1800 | | 少.(| ~.0014 | .1787 | .0049 | 1.229 | .2453 | .0000 | .0164 | | 华 E | ~.0143 | 0834 | .0038 | 0324 | .1845 | .0021 | .0164 | | Elem
Units
Avge
SDev
%RSD | B
PPM
.0047
.0000
.1019 | LI
PPM
0033
.0012
-35.36 | P
PPM
0936
.0845
-90.33 | MO
FFM
.0020
.0029
140.7 | SE
PPM
.0494
.0077
15.62 | SR
SPM
.0005
.0001
10.10 | 8102
8PM
.1351
.0305
22.56 | | #1 | .0047 | 0041 | 0338 | .0000 | .0348 | .0005 | .1567 | | #문 | .0047 | 0025 | 1533 | .0041 | .0439 | .0005 | .1136 | | Elem
Unics
Avgæ
2Dev
NACO | 8N
FPM
.0045
.0000
.0814 | TL
PPM
.0528
.0117
82.06 | TI
FPM
.0000
.0004
18260. | ZR
FPM
.0000
.001
-20110. | | | | | 14
42
54 | .0045
.0045 | .0446 | .0003
0003 | .0008
008 | | | | Operator: JM. Comment: ICP-AT | Elem
Units
Avge
SDev
%RSD | AL
98M
1.808
.018
.9985 | SB
PPM
.4977
.0184
3.690 | AS
PFM
1.933
.064
3.304 | BA
PFM
1.849
.000 | BE
PPM
.0499
.0000
.0549 | CD
PPM
.0481
.0018
3.645 | CA
PPM
98.48
.60
.5115 | |---------------------------------------|--------------------------------------|---|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|------------------------------------| | 排1 | 1.821 | .5107 | 1.887 | 1.349 | .0499 | .0469 | 98.91 | | #2 |
1.776 | .4847 | 1.978 | 1.349 | .0499 | .0494 | 98.05 | | Elem | OR | CO | CU | FE | PB | MG | MN | | Units | PFM | PFM | PFM | PPM | FPM | PFM | PFM | | Avge | .1914 | .4904 | .2417 | .9604 | .5199 | 50.32 | .4748 | | SDev | .0007 | .0026 | .0019 | .0065 | .0126 | .24 | .0039 | | MRSD | .3869 | .5207 | .7971 | .6808 | 2.420 | .4627 | .8235 | | #1 | .1920 | .4924 | .2404 | .9650 | .5110 | 50.98 | .4776 | | #2 | .190 9 | .4888 | .2431 | .9557 | .5288 | 50.45 | .4720 | | Elem
Units
Avge
SDev
%RSD | NI
PFM
.4837
.0188
3.889 | K
PPM
49.21
.22
.4449 | AG
PPM
.0508
.0004
.7301 | NaHi
FPM
100.4
.7
.7203 | NaLo
ppm
92.01
.27
.2913 | y
FPM
.4738
.0028
.5949 | ZN
FPM
.4925
.0009 | | # L | .4970 | 49.06 | .0505 | 100.9 | 91.62 | .4753 | .4919 | | #2 | .4704 | 49.37 | .0511 | 99.37 | 92.60 | 4718 | .4931 | | Elem | 2 | LI | P | MO | SE | SR | 8102 | | Units | 2FM | PPM | PPM | FPM | PPM | PPM | 2FM | | Avge | .0594 | 0033 | 0043 | 0048 | .0571 | .0224 | .1526 | | SDev | .0076 | .0035 | .0529 | .0029 | .0038 | .0001 | .0116 | | MASD | 15.17 | -106.1 | -1234. | -60.03 | 6.569 | .2210 | 7.600 | | #1 | . 3662 | 0057 | .)331 | 0028 | . 0545 | .0224 | .1608 | | #2 | . 1526 | 0008 | 0417 | 0048 | . 0 578 | -0224 | .1444 | | Elem
Units
Avge
SDev
UAED | 8N
PFM
4.854
.V18
.A517 | TL
PPM
00 2 0
.0201
-783.3 | FFM
0016
.0004
-88.99 | ZR
PPM
0003
.0000
3358 | | | | | #2
#2 | +.345
+.343 | .0121
0162 | 0013
0019 | 0003
0003 | | | | Method: ICAP1 Sample Name: 13891-01DU Run Time: 05/14/91 14:26:00 Comment: ICF-AT | Elem
Units
Avge
SDev
%RSD | AL
PFM
0160
.0542
-339.9 | SB
PFM
.0052
.0073
140.1 | AS
PPM
0511
.0128
-25.04 | BA
PPM
.0043
.0000 | BE
PPM
0003
.0000 | CD
PPM
.0006
.0025
440.2 | CA
PPM
.2142
.0361
16.84 | |---------------------------------------|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | #1 | .0224 | .0000 | 0421 | .0043 | 0003 | .0024 | .2397 | | #2 | 0543 | .0104 | 0602 | .0043 | 0003 | 0012 | .1887 | | Elem
Units
Avge
SDev
%RSD | CR
PPM
0011
.0022
-207.6 | CO
PFM
.0000
.003
-91710. | CU
FPM
.0027
.0010
35.22 | FE
FFM
.0282
.0020
6.958 | PB
PPM
.0157
.0030
19.39 | MG
FPM
.0437
.029:
66.54 | MN
PFM
0005
.0000 | | #1 | 0026 | 0018 | .0034 | .0295 | .0178 | .0643 | 0005 | | #8 | .0005 | .0018 | .0020 | .0268 | .0135 | | 0005 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | Avge | .0005 | 0715 | .0019 | 0696 | .2477 | 0014 | .0198 | | SDev | .0013 | .1179 | .0004 | .1302 | .0490 | .0015 | .0016 | | %RSD | 288.5 | -165.0 | 20.56 | -187.1 | 19.79 | -95.58 | 8.039 | | #12 | .0014 | 1548 | .0022 | 1517 | .2923 | 0005 | .0209 | | #2 | 0003 | J0119 | .0016 | .0225 | .2130 | 0024 | .018 4 | | Elem | 3 | LI | P | MG | SE | SR | \$102 | | Units | PPM | PPM | PFM | PPM | PPM | FPM | 99M | | Avgs | .0080 | 0033 | 0840 | 0101 | .0410 | .0004 | .1116 | | SDev | .0014 | .0012 | .0000 | .002 9 | .0039 | .0001 | .0087 | | KRSD | 20.23 | -35.36 | 0012 | -2 9 .31 | 9.504 | 25.71 | 7.783 | | 卷) | .0098 | 0041 | 0840 | 00 6 1 | .043 8 | .0003 | 054 | | 特层 | .069 | 00 2 5 | 0840 | 0122 | .038 3 | .000 5 | 177 | | Elem
Laite
Avçe
BDe
VRED | 5N
FFN
.0045
.0254
TGS.7 | TL
PPM
0015
.0191
-1191.
0143 | 7I
PPM
0012
.0004
-35.94
0009 | ER
PPM
.0004
.0005
133.1 | | | | | #E | 0135 | .0113 | ~.0015 | .0000 | | | | Method: ICAP1 Sample Name: 13592-01 Run Time: 05/14/91 14:27:41 Comment: ICF-AT | Elem | AL | SB | AS | BA | BE | CD | CA | |---|---|---|---|---|---|--|--------------------------------------| | Units | PPM | FFM | FPM | PFM | PPM | PPM | PPM | | Avge | .1679 | .0047 | .0036 | .0807 | .0010 | 0003 | 78.13 | | SDev | .0002 | .0074 | .0418 | .0030 | .0001 | .0040 | .81 | | %RSD | .0893 | 156.3 | 1174. | 3.764 | 4.781 | -1193. | 1.034 | | #1 | .1680 | .0099 | 0260 | .0829 | .0009 | .00 25 | 78.70 | | #巴 | .1678 | 0005 | .0331 | .0786 | | 0032 | 77.56 | | Slem
Units
Avge
SDev
WRSD | CR
PPM
0005
.0015
-249.4 | CO
FFM
.0062
.0013
20.39 | CU
PPM
.0266
.0000 | FE
PPM
1.407
.007
.4643 | PB
PPM
.0155
.0095
61,07 | MG
FFM
14.56
.13
.9152 | MN
FFM
1.172
.012
1.056 | | #1 | .000 5 | .0071 | .0266 | 1.412 | .0088 | 14.66 | 1.181 | | #2 | 0016 | .0053 | .0266 | 1.403 | | 14.47 | 1.164 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | PPM | PPM | ppm | FPM | PFM | | Avge | .0007 | 2.432 | .0034 | 47.97 | 43.36 | .0022 | .0435 | | SDav | .0091 | .101 | .0011 | 1.61 | .17 | .0055 | .0008 | | %RSD | 1303. | 3.840 | 31.18 | 3.357 | .4007 | 251.9 | 1.761 | | #2
Elem
Un:ts
Avge
SDev
%RSD | 0057
8
PPM
.1753
.0015
.8796 | 2.561
LI
PPM
.0049
.0012
E3.57 | .0044
P
PPM
0002
.0475
-20220. | 46.83
MO
PFM
0015
.0029
-194.1 | 43.24
SE
FPM
.0337
.0579
171.5 | 0017
SR
PFM
.3978
.0031
.7716 | .0430
S102
PPM
14.23
.11 | | 幸. | .1742 | .0057 | .3334 | .0006 | .0747 | .3999 | 14.30 | | 概器 | .1764 | .0041 | 0339 | 0035 | 0072 | .3956 | 14.15 | | Elar
Gritz
Avçı
EDOV
ASD | 8N
FPM
10090
10054
70.75 | TL
PPM
.0475
.0109
23.02 | TI
PPM
.0031
.0005
14.76 | ZR
PPM
.0007
.0022
302.1 | | | | | 94 ⊈
84 <u>₹</u> | .0135
.0045 | .0398
.0552 | .0034
.0028 | .0023
0008 | | | | Method: ICAP1 Sample Name: 13592-01MS Run Time: 05/14/91 14:30:33 Comment: ICP-AT | Mode: Cu | INC COTT | . Factor: | 1 | | | | | |---|-------------------------------------|--------------------------------------|---|--|--------------------------------------|--------------------------------------|--------------------------| | Elem
Units
A vge
SDev
KRSD | AL
FFM
1.970
.036
1.333 | SB
FPM
.5023
.0109
2.176 | AS
PPM
1.924
.038
1.951 | BA
PFM
1.941
.022
1.118 | BE
PPM
.0486
.0000
.0224 | CD
PPM
.0473
.0021
4.381 | CA
FPM
178.3
.8 | | # 1 | 1.944 | .4945 | 1.950 | 1.925 | .0486 | .0459 | 177.9 | | #2 | 1.995 | .5100 | 1.897 | 1.956 | .0486 | .0488 | 178.9 | | Elem | CR | CO | CU | FE | PB | MG | MM | | Units | PPM | FFM | PFM | PPM | PPM | PFM | PFM | | Avge | .1951 | .4877 | .2676 | 2.317 | .4926 | 66.24 | 1.459 | | SDav | .0045 | .0099 | .0019 | .002 | .,129 | .41 | .008 | | %RSD | 2.283 | 1.833 | .7199 | .0844 | 2.624 | .6236 | .5104 | | #1 | .1919 | .4814 | .2 6 90 | 2.316 | .4835 | 6 5. 95 | 1.653 | | #2 | .1982 | .494i | .2562 | 2.319 | .5017 | 86.54 | 1.665 | | Elem | NI | | AG | NaHi | NaLo | V | ZN | | Units | F PM | FFM | PPM | PFM | ppm | FPM | PPM | | Avge | .4849 | 52.31 | .0444 | 147.2 | 137.5 | .4715 | . 5236 | | SDev | .000 6 | .64 | .0027 | 1.4 | 2.3 | .0013 | . 0024 | | %RSD | .1304 | 1.219 | 6.069 | .9061 | 1.700 | .2768 | . 4590 | | # t | . 4854 | 52.04 | .0463 | 148.3 | 135.8 | .4725 | ,5219 | | #Œ | . 4845 | 52.97 | .0425 | 150.2 | 139.1 | .4705 | ,6 25 8 | | Slam | 0 | LI | P | MO | SE | 3R | 5108 | | Umios | PFM | PPM | PPM | 2PM | PPM | FPM | FFM | | Avge | .1598 | .0025 | .0663 | 0022 | .0332 | .4313 | 14.55 | | SDev | .0112 | .0023 | .0370 | .0000 | .0038 | .0013 | .04 | | MASD | 7.015 | 94.28 | 55.33 | 4071 | 11.44 | .2751 | .3084 | | # 1 | . 1678 | .0041 | .0401 | 0022 | .0339 | .4807 | 75 | | # # | 1517 | .000 8 | .0925 | 0022 | .0306 | .4327 | 14.53 | | Eus
un tous
Avge
88ev
485e | E
FRM
-1548
-170
-11 | TL
PPM
.0096
.0148
.54.7 | TT
FFM
-00.011
.0008
-74.30 | ER
PFM
-,0015
.0005
-34.66 | | | | | 件主
排 名 | ⊹. <i>≘₹</i> 7
4.797 | .0201
0009 | 0003
0017 | 0012
0019 | | | | Method: ICAP1 Sample Name: 13592-01DU Operator: JM Run Time: 05/14/91 14:32:46 Comment: ICP-AT | Elem
Units
Avge
SDev
MRSD | AL
FPM
.1343
.0203
.3.14 | SB
PPM
.0151
.0001
.3436 | AS
FPM
0009
.0087
-727.5 | BA
PFM
.0853
.0000 | BE
PPM
.0009
.0000
1.695 | 3D
FFM
0017
.0004
-35.08 | CA
FPM
80.67
.34
.4157 | |---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------| | #1 | .1199 | .0151 | 0071 | .0853 | .0009 | 0021 | 80.91 | | #2 | .1487 | .0150 | .0052 | .0853 | | 0013 | 80.43 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | FPM | FPM | PPM | PPM | FFM | | Avge | 0004 | .0008 | .0279 | 1.438 | .0109 | 15.04 | 1.211 | | SDev | .0030 | .0013 | .0019 | .001 | .0095 | .03 | .002 | | MRSD | -336.7 | 163.5 | 6.888 | .0453 | 36. 87 | .2170 | .1617 | | #1 | 0024 | .0017 | .0
29 3 | 1.488 | .0042 | 15.08 | 1.212 | | #2 | .0015 | -10001 | .0266 | 1.489 | .0176 | 15.07 | | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | FFM | FFM | ppm | PFM | PPM | | Avge | .0104 | 2.573 | .0017 | 49.92 | 44.62 | .0032 | .0542 | | SDev | .0149 | .185 | .0015 | .25 | .17 | .0017 | .0017 | | %RSD | 143.8 | 7.202 | 38.77 | .5028 | .3833 | 51.57 | 3.048 | | # 1 | .0209 | 3.442 | .0028 | 49.75 | 44.50 | .0044 | .0531 | | #2 | 0002 | 2.704 | .000. | 50.10 | 44.75 | .00 2 1 | .0554 | | Elem | 8 | LI | 8 | MO | 3E | SR | S1G2 | | Units | 88M | PPM | 8PM | PPM | PPM | PPM | FPM | | Avge | .1748 | .0049 | .0146 | .0006 | .0314 | .4121 | 14.53 | | SDev | .0064 | .0012 | .1110 | .0058 | .03 85 | .000S | .04 | | XRED | 8.037 | 23.57 | 759.2 | 1014. | 122.7 | .1982 | .2797 | | 约1 | 16 92 | .0057 | 0639 | 0046 | ,0041 | .4117 | 14.56 | | 法证 | 1 7 98 | .0041 | .0 9 31 | : 003 5 | ,0586 | .4127 | 14.51 | | Ella
Lutava
Avgla
E Dev
KARD | RM
 | TL
PPM
.0110
.0257
242.6 | 77
PPM
.0008
.0004
34.43 | ER
FPM
0001
.0000
-18.53 | | | | | #1
#2 | .)045
0225 | .0253
0079 | .0011
.0005 | 0001
.0000 | | | - | | Run Time: 05/14/91
Comment: ICP-AT | | Sample Na
14:34:20
Factor: 1 | | Needs TION | Ope | Operator: JM | | | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--|--| | Elem
Units
Avge
SDev
MRSD | AL
PFM
0145
.0339
-233.8 | SB
PPM
.0233
.0255
109.7 | AS
PPM
.0061
.0064 | BA
FPM
.0706
.0000 | BE
PPM
.0003
.0010
310.6 | CD
PFM
.0009
.0006
67.83 | CA
PPM
4 2.96
.30
.7052 | | | #1
#2 | 0385
.0095 | .0052
.0413 | .0016
.0107 | .0706
.0706 | 0004
.0010 | .0005
.0014 | 42.74
43.17 | | | Elem
Units
Avge
SDev
%RSD | CR
FPM
0016
.0044
-280.6 | CO
FPM
0010
.0013
-130.4 | CU
PPM
.0245
.0010
3.920 | FE
PPM
.1192
.0000
.0011 | PB
PPM
.0000
.0064
1154000. | MG
PPM
.9474
.006: | MN
FFM
.0290
.0013
4.487 | | | #1
#2 | .0016
0047 | 0019
0001 | .0238 | .1192 | 0045
.0045 | .951S
.943t | .0300
.0281 | | | Elem
Units
Avge
SDev
%RSD | NI
FPM
.0069
.0104
151.7 | K
PFM
2.596
.253
9.731 | AG
PPM
.0025
.0019
77.49 | NaHi
FPM
2122.
5.
.2360 | NaLo
ppm
84136.
.0009 | y
FFM
.0020
.0025
122.4 | ZN
PPM
.0168
.0008
4.585 | | | #1
#2 | .0142
0005 | 2.775
2.418 | .0011
.0038 | 2113.
2125. | 361 36.
3 6136. • | .0038
.0003 | .0173
.0162 | | | Elem
Units
Avge
SDev
MRSD | 8
PPM
.0831
.0016
1.729 | LI
PPM
.0041
.0000 | P
PPM
.5093
.0792
15.55 | MO
PPM
.0021
.0029
133.4 | SE
FFM
.0154
.0193
125.5 | SR
PPM
.2305
.0010
.4509 | 3102
PPM
8.046
.074
.9172 | | | 等 []
新選 | .0817
.0842 | .0041
.0041 | .4533
.5653 | .0000
.0041 | .0017
.02 9 0 | .2298
.2313 | 7.994
3.99 | | | Ilam
Dalam
Avga
Boms
JanI | 3N
FEM
.0743
.0000
092 | TL
PPM
.0318
.0402
136.3 | TI
FPM
0007
.0004
-68.03 | 2R
PPM
0004
.0005
-135.2 | | | | | | 91.
4 2. | .0943
.0943 | .0034
.0602 | 0010
0004 | 0008
.0000 | | | | | Method: ICAP1 Sample Name: CCV-4 Run Fime: 05/14/91 15:08:10 Aun Fime: 05/14/91 15:08:10 Comment: SOLUTION 051491 Mode: CONC Corr. Factor: 1 | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|----------------|-------|-------| | Units | FPM | PPM | PFM | PPM | PPM | FPM | PFM | | Avge | 1.001 | 2.050 | 2.045 | .9777 | .9923 | 1.003 | 51.70 | | SDev | .030 | .000 | .081 | .0109 | .0184 | .009 | .65 | | %RSD | 3.000 | .0024 | 3.956 | 1.110 | 1.856 | .8883 | 1.248 | | #1 | .9800 | 2.050 | 1.988 | .9701 | .9792 | .9964 | 51.25 | | #2 | 1.022 | 2.050 | 2.102 | .9854 | 1.005 | 1.009 | 52.16 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | FPM | PPM | PPM | PPM | PPM | | Avge | .9853 | 1.023 | .9782 | 1.030 | 1.014 | 25.60 | .9822 | | 3Dev | .0047 | .017 | .094 | .021 | .019 | .22 | .0143 | | %RSD | .6764 | 1.623 | .9845 | 2.030 | 1.919 | .8425 | 1.460 | | #1 | .9806 | i.011 | .9714 | 1.015 | i.000 | 25.44 | .9720 | | #這 | .9900 | 1.035 | .9850 | 1.045 | i.028 | 25.75 | .9923 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | PPM | PPM | ppm | PPM | PPM | | Avge | .9861 | 49.44 | .9721 | 50.70 | 45.84 | 1.000 | 2.031 | | SDev | .0038 | .64 | .0085 | .10 | .34 | .008 | .031 | | %RSD | .3848 | 1.295 | .8707 | .1958 | .7415 | .8101 | 1.531 | | 特記 | .9887 | 49.89 | .9781 | 50.63 | 4 6. 08 | 1.006 | 2.053 | | Diam | 3 | LI | P | MG | SE | SR | 5102 | | Units | 8PM | PPM | PPM | FPM | PFM | PPM | PPM | | Avge | .9637 | .9084 | 25.99 | 1.034 | 1.022 | .9916 | .1680 | | SDev | .0209 | .0069 | .64 | .003 | .000 | .0094 | .0264 | | MRSD | 2.170 | .7638 | 2.477 | .2785 | .0294 | .9485 | 15.74 | | ₩ L | . 76 39 | .7035 | 25.54 | 1.032 | 1.021 | .9850 | .1493 | | \$4# | . 97 85 | .7133 | 26.45 | 1.034 | 1.022 | .9983 | ,1867 | | N.am
Intes
Arge
Moev
Masj | EN
PPM
D.179
1007
1206 | TL
PPM
9.804
.127
299 | TI
PPM
.7875
.0107
1.083 | ZR
FPM
.9793
.0087
.8915 | | | | | #1
#2 | 3.174
5.184 | 9.714
9.894 | .9800
.9 95 1 | .9731
.9854 | | | | Method: ICAP1 Sample Name: CCV-4 (SiG2) Operator: JM Sun Time: 05/14/91 15:12:43 Comment: SOLUTION 050291 Mode: CONC Corr. Factor: 1 | Elem
Units
Ayge
SDev
%RSD | AL
PPM
0089
.0087
-97.75 | SB
FFM
.0156
.0000
.0587 | AS
PPM
0387
.0176
-45.38 | BA
FPM
.0000
.0000 | BE
FPM
.0005
.0010
224.1 | CD
FPM
.0004
.0013
230.7 | CA
PPM
.0077
.0036
47.12 | |---------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | #1 | 0028 | .0156 | 0263 | .0000 | .0012 | 0004 | .0051 | | #2 | 0151 | .0156 | 0511 | | 0003 | .0015 | .0102 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | FPM | PPM | PPM | PPM | PPM | FPM | PFM | | Avge | 0037 | .0027 | .0014 | .0171 | .0113 | 0119 | .0175 | | SDav | .0015 | .0013 | .0010 | .0057 | .0159 | .0880 | .0007 | | %RSD | -39.97 | 47.27 | 70.58 | 34.42 | 140.4 | -198.9 | 3.720 | | #1 | 00 26 | .0036 | .00 2 0 | .0212 | .02 25 | .0043 | .0180 | | #亞 | 0047 | .0018 | | .0129 | .0001 | 0292 | .0170 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | FPM | FPM | PPM | ppm | PPM | PPM | | Avge | .0119 | 3692 | .0032 | 1348 | 0208 | 0022 | .0050 | | SDev | .0020 | .0674 | .0007 | .0065 | .0180 | .0002 | .0016 | | %RSD | 16.44 | -18.25 | 22.14 | -4.857 | -86.42 | -7.810 | 31.72 | | ម! | .0105 | 3216 | .0037 | 1394 | 0081 | 0024 | .062 | | #2 | .0133 | 4169 | .0027 | 1308 | 0335 | 00&1 | .0039 | | Elem | 3 | LI | P | MO | SE | 98 | 3102 | | Units | PPM | PPM | PPM | PPM | PPM | 88M | FPM | | Avge | 0018 | 0033 | .0186 | 00 61 | .0437 | .0002 | 20.10 | | 3Dev | .0060 | .0012 | .1161 | .00 29 | .0155 | .0002 | .53 | | 4RSD | -331.9 | -35.36 | 623.6 | -47.14 | 35.37 | !13.1 | 2.638 | | #1 | 00 4: | 0023 | .1007 | -,0081 | .0546 | .0003 | 19.72 | | #溫 | .0025 | 0041 | 0635 | ,0040 | .0328 | .0000. | 20.47 | | Clem
Units
Avge
SDev
ARED | SN
9PM
.0359
.0318
39.58 | TL
2 PM
.0197
.0218
138.4 | TI
PPM
0007
.0009
93.75 | ZR
FPM
.0320
.0278
86.95 | | | | | #1
#2 | .0134
2 0583 | .0312
.0003 | 0003
0015 | .0316
.0123 | | | | Method: ICAP1 Sample Name: CCB-4 Run Time: 05/14/91 15:22:00 Comment: | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | THE SUME COTT, TREEDI, I | | | | | | | | | | |---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------|--------------|---------------|--|--|--| | Elem | AL | SB | AS | BA | RE | CD | CA | | | | | Units | FFM | PPM | PPM | PPM | PPM | PPM | PFM | | | | | Avge | 0290 | .0025 | 0137 | .0000 | .0010 | 0023 | 00 25 | | | | | SDev | .0046 | .0037 | .0219 | .0000 | .0000 | .0013 | .0036 | | | | | %RSD | -13.33 | 141.1 | -159.3 | .0000 | 2.680 | -39.38 | -141.5 | | | | | #1
#2 | 0322
0257 | .0052 | 0292
.0017 | .0000 | .0010
.0010 | 0013
0032 | 0051
.0000 | | | | | Elem | CR | 00 | CU | FE | PB | MG | MN | | | | | Units | PFM | PPM | PFM | FPM | PPM | PPM | PPM | | | | | Avgs | 0016 | 0034 | 0014 | .0028 | .0022 | 0245 | 0014 | | | | | SDev | .0015 | .0000 | .0029 | .0000 | .0095 | .0024 | .0000 | | | | | %RSD | -78.32 | 0508 | -212.5 | .0431 | 439.6 | -9.206 | 2245 | | | | | #1 | 0005 | -,00 36 | .0007 | .028 | ~.0046 | 0248 | 0014 | | | | | 發定 | 0026 | -,0036 | 0034 | .023 | .0089 | 0283 | 0014 | | | | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | | | | Units | PPM | PPM | FPM | PPM | ppm | PPM | PPM | | | | | Avge | .0055 | 5002 | .0082 | -1.290 |
0998 | 0039 | .0000 | | | | | SDev | .0019 | .1179 | .0008 | .377 | .0283 | .0032 | .002 | | | | | %RSD | 83.04 | -23.57 | 34.97 | -29.20 | -28.39 | -82.14 | ~23220. | | | | | #1 | .0048 | 5835 | .00 27 | -1.556 | 11 9 8 | 00&: | 0017 | | | | | #문 | .0041 | +169 | .0014 | -1.024 | 0 79 7 | 001& | .0017 | | | | | Elem | 8 | EI | 6 | MO | SE | SR | 3102 | | | | | Units | PPM | PPM | FPM | PPM | PPM | FPM | PPM | | | | | Avge | 0058 | 0016 | .0075 | 0020 | .0545 | .0000 | 0268 | | | | | SDev | .3032 | .0012 | .0263 | .00 86 | .0309 | .000 | .0101 | | | | | MRSD | -47.89 | -70.71 | 351.0 | -424.7 | 56.72 | -288.8 | -37.70 | | | | | #1 | 0091 | 0025 | .0261 | -:0081 | .0 22 4 | 0001 | -,0196 | | | | | 42 | 0045 | 0008 | 0111 | ,0041 | .0 7 63 | .0000 | -,0339 | | | | | 위 (중요
Unit 1915
유무말로
(80 2.4
(14.4) D | HM
PPM
.0085
.0087
70.85 | TL
FPM
.0859
.0319
183.4 | TI
PPM
0012
.0004
-35.00 | ZR
PPM
0031
.0011
-35.02 | | | | | | | | ₩ Ĺ
株記 | . :225
. :045 | .0484
.0033 | 0009
0015 | 0039
023 | | | | | | | Method: ICAP1 Sample Name: 13592-02 Run Time: 05/14/91 15:35:01 Comment: ICP-AT | Mode: 40 | NC COFF. | Factor: 2 | | | | | | |--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------|----------------|---------------| | Elem | AL | SB | AS | 8A | BE | CD | CA | | Units | PPM | FPM | PPM | PPM | PPM | PPM | PFM | | Avge | .0028 | .0104 | 0187 | .0737 | .0020 | .0010 | 43.86 | | SDev | .0133 | .02 9 2 | .0308 | .0017 | .0000 | .0001 | .58 | | 455D | 472.5 | 281.6 | -164.4 | 2.357 | .2215 | 6.279 | 1.316 | | #1 | 0066 | 0103 | .0030 | .0724 | .0020 | .0007 | 43.45 | | #2 | .0123 | .0310 | 0405 | .0749 | .0020 | .0010 | 44.27 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Jnits | PPM | PFM | PPM | PPM | FPM | FPM | PFM | | Avge | 0042 | .0017 | .0245 | .0970 | 0134 | .7406 | .0284 | | 3Dev | .0015 | .0025 | .0019 | .0039 | .0052 | .0146 | .0000 | | %RSD | -34.65 | 146.8 | 7.830 | 4.057 | -46.48 | 1.552 | .0120 | | #1 | 00 53 | 0001 | .0259 | .0942 | 0090 | .9509 | .0296 | | 母已 | 00 3 2 | .0034 | .0232 | .0998 | 0178 | .9802 | .0286 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Unita | PPM | PPM | PPM | PPM | ppm | PFM | PPM | | Avge | 0047 | 2.096 | .0011 | 2117. | 1595. | 0010 | .0134 | | BDev | .0157 | .371 | .0031 | 14. | 5. | .0007 | .0015 | | MRSD | -357.1 | 17.68 | 280.4 | .6573 | .3436 | -71.53 | 11.48 | | がえ | .0084 | 2.8 58 | 0011 | 210 3. | 1591. | 300% | .0145 | | 練名 | 0153 | 1.834 | .0033 | 21 27. | 1599. | 0015 | .0123 | | Elem | 0 | LI | P | MO | SE | SR | 8102 | | Unics | FPM | PPM | PPM | PPM | PPM | PPM | FPM | | Avgs | .0840 | .0000 | .4796 | 0142 | .0286 | .2274 | 7.741 | | SDev | .0032 | .0114 | .0103 | .0115 | .0231 | .0022 | .214 | | SROD | 3.8 52 | .0000 | 2.156 | -70.90 | 80.38 | .9474 | 2.766 | | # <u>1</u> | .08 63 | 0082 | .4669 | 00 81 | .0183 | 227 9 | 7.35 7 | | #2 | .0817 | .0082 | .4725 | 0 24 3 | .0449 | . 23 10 | 7.392 | | Clem
L Sa
. Pgw
GDe /
IAED | 3M
PPM
.J179
.J381
:12.J | TL
PPM
.1033
.1460
.41.3 | TI
FPM
0025
.0034
-167.8 | ZR
PPM
0039
.0035
-54.57 | | | | | 9-1
1462 | | .0001
.2065 | 0049
0001 | 0015
0062 | | | | page i Method: ICAP1 Sample Name: IDL's # 1 Operator: JM Sum Time: 05/14/91 15:43:18 Comment: 2nd QUARTER 1991 DAY 1 Mode: CONC Corr. Factor: 1 | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|----------------|----------------|----------------| | Units | PPM | FFM | FPM | PPM | PPM | PPM | PPM | | Avge | .1891 | .1710 | .2297 | .0141 | .0063 | .0243 | .1070 | | SDev | .0227 | .0219 | .0306 | .0000 | .0000 | .0020 | .0000 | | %88D | i1.77 | 12.80 | 13.32 | .0000 | .0562 | 7.531 | .0015 | | # 1 | .2052 | .1556 | .2514 | .0141 | .0063 | .0249 | .1070 | | #己 | .1731 | .1865 | .2081 | | .0063 | .0277 | .1070 | | Elea | CR | CC | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | PPM | PPM | PFM | PPM | | Avge | .0241 | .0288 | .0225 | .1520 | .1713 | .3722 | .0208 | | 3Dev | .0082 | .0026 | .0000 | .020 | .0127 | .0036 | .0000 | | %RSD | 9.241 | 3.875 | .0023 | 1.28 9 | 7.389 | .9631 | .0054 | | 体1
排出 | .02 57
.0225 | .0306
.0270 | .0225 | .1506
.1534 | .1623 | .3697
.3747 | .0208
.0208 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PFM | PPM | PPM | ppm | FPM | PPM | | Avge | .1079 | 3.740 | .0219 | 0983 | .3151 | .0242 | .0317 | | SDev | .0111 | .354 | .0004 | .1301 | .0125 | .0000 | .0016 | | %RSD | 10.24 | 9.458 | 1.767 | -132.3 | 3.976 | .0213 | 5.146 | | # . | .1157 | 3.990 | .0216 | 0043 | .3239 | .0242 | .0306 | | #2 | .1001 | 3.490 | .0222 | 1703 | .3062 | .0242 | .0329 | | Clam | 3 | LI | P | MO | SE | SR | S102 | | Solts | PFM | PPM | PPM | PPM | PPM | PPM | PPM | | Avge | .0 287 | .1325 | .2940 | .0295 | .5141 | .0931 | .3681 | | SDev | .0044 | .0012 | .0000 | .0000 | .0308 | .0002 | .0131 | | CRSD | 32.07 | .8730 | .0078 | .0151 | 5.795 | .15 9 5 | 1.509 | | # 1. | .0004 | .1316 | .2940 | .0285 | .4923 | .930 | . 3773 | | #进 | .0844 | .1333 | .2940 | .0285 | .53 5 9 | .0932 | . 3538 | | Elda
Grubs
Hygi
Boay
WASO | 3N
PFM
1.334
1.557
3.680 | TL
PPM
1.836
.018
.9794 | TI
PPM
.0149
.0004
2.556 | ZR
PPM
.0987
.0011
1.110 | | | | | #1
#2 | 1.513
594 | 1.824
1.847 | .0146
.0152 | .0994
.0979 | | | | Method: ICAF1 Sample Name: IDL's # 2 Operator: JM Run Time: 05/14/91 15:44:52 Comment: 2nd QUARTER 1991 DAY 1 Mode: CONC Corr. Factor: 1 | Elem
Units
Avge
SDev
KRSD | AL
FPM
.1861
.0226
12.15 | 3B
FPM
.1762
.0146
8.288 | AS
FFM
.2235
.0221
9.896 | BA
PPM
.0141
.0000 | BE
FFM
.0063
.0000
.1232 | CD
FFM
.0268
.0013
5.001 | CA
FFM
.1147
.0036
3.147 | |---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | #1
#2 | .1701
.2021 | .1865
.1659 | .2391
.2079 | .0141 | .0063
.0063 | .025 <i>9</i>
.0278 | .1121 | | Elem | CR | CO | CU | FE | F9 | MG | MN | | Units | PPM | FFM | PPM | FPM | PPM | 2PM | PPM | | Avge | .0257 | .0341 | .0245 | .1548 | .1603 | .4073 | .0208 | | 3Dav | .0003 | .0000 | .0010 | .007 | .0032 | .0291 | .0000 | | %RSD | .0317 | .0042 | 3.939 | .4217 | 2.004 | 7.137 | .0128 | | #1 | .0257 | .0361 | . 0238 | .1543 | .1626 | .3868 | .0208 | | }2 | .0257 | .0361 | . 0252 | | .1580 | .4279 | .0208 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | FPM | PPM | PPM | ppm | PPM | PPM | | Avge | .1063 | 3.728 | .0211 | .4388 | .3305 | .0273 | .0329 | | SDev | .0026 | .337 | .0000 | 1.148 | .0071 | .0010 | .0016 | | %RSD | 2.441 | 9.037 | .0148 | 261.7 | 2.143 | 3.322 | 4.859 | | #1 | .1083 | 3.490 | .0211 | 3731 | .3255 | .0265 | .0340 | | -8 | .1047 | 3.9 66 | .0211 | i.251 | .3355 | .0 28 0 | .0317 | | Elem | S | LI | P | MO | SE | 5R | 3102 | | Onits | PFM | PPM | PPM | PPM | PPM | PPM | 3PM | | Avge | .0301 | .1349 | .3013 | .0326 | .4843 | .0944 | .8794 | | SDev | .0048 | .0000 | .1267 | .0057 | .0116 | .0005 | .0202 | | XESD | LS.95 | .0000 | 42.06 | 17.63 | 2.394 | .5770 | 2.301 | | 31 | 0867 | .1349 | .2117 | . 346 | .4925 | .0946 | .993 3 | | 5 <u>2</u> | .0865 | .1349 | .3909 | . 285 | .4761 | .0840 | .8531 | | Elma
Unitate
Augus
EDesy
USEO | 5M
PFM
1.599
.108
5.754 | TL
PPM
1.358
.009
.4785 | TI
PPM
.3103
.0004
2.990 | 2R
FPM
.1006
.0005
.5456 | | | | | 91
42 | 1.67 5
1.622 | 1.852
1.865 | .0146
.0140 | .1002
.1010 | | | | Method: ICAP1 Sample Name: IDL's # 3 Run Time: 05/14/91 15:47:10 Comment: End QUARTER 1991 DAY 1 Mode: CONC Corr. Factor: 1 | 11000 | 314C CG11 | . Pactor. | | | | | | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|-----------------------------| | Elem | AL | SB | AS | BA | BE | CD | CA | | Units | 99M | PPM | PPM | PPM | PPM | FFM | PPM | | Avge | .1 686 | .1866 | .2671 | .0141 | .0043 | .0263 | .1147 | | SDev | .042 9 | .0000 | .0091 | .0000 | .0000 | .0007 | .0036 | | MRSD | 85.46 | .0166 | 3.391 | .0000 | .0247 | 2.631 | 3.144 | | #1 | .1989 | .1844 | .2607 | .0141 | .0043 | .0248 | .1172 | | #2 | .1382 | .1845 | .2735 | .0141 | .0043 | .0258 | | | Elem
Units
Avge
SDev
%RSD | CR
FPM
.0257
.0015
5.758 | CO
PPM
.0361
.0026
7.082 | CU
PPM
.0252
.0019
7.450 | FE
FPM
.1552
.0039
2.528 | PB
PPM
.1491
.0063
4.224 | MG
PPM
.3791
.3303
7.998 | MN
PPM
.0208
.0000 | | #1 | .0267 | .0379 | .0265 | . 1580 | .1447 | .4005 | .0208 | | #色 | .0246 | .0343 | .0238 | . 1525 | .1536 | .3576 | .0208 | | Elem | NI | K | 4G | NaHi | NaLo | V | ZN | | Units | PPM | PPM | PPM | FFM | ppm | FFM | PPM | | Avge | .1111 | 3.715 | .0214 | .2879 | .2827 | .0260 | .0323 | | SDev | .0065 | .118 | .0008 | .4265 | .0300 | .0002 | .0008 | | %RSD | 5.831 | 3.173 | 3.550 | 147.1 | 10.60
 .6733 | 2.573 | | #1 | .:157 | 3.779 | .0222 | .5915 | .2615 | .0253 | .0317 | | #2 | .:065 | 3.633 | .0211 | 0117 | .3039 | .0261 | .0329 | | Elem | 3 | LI | P | .10 | SE | SR | 3102 | | Inics | FFM | PPM | PPM | FFM | PPM | PFM | PFM | | Avge | .0 882 | .1341 | .3155 | .0245 | .4679 | .0946 | .8774 | | SDev | .00 32 | .0012 | .0581 | .0029 | .0039 | .0003 | .0000 | | XRSD | .003 3 | .8623 | 18.40 | 10.32 | .8292 | .3153 | .0008 | | 学 文 | . 五年4 | .1349 | .2714 | .3245 | ,4706 | 0984 | .3774 | | 名品 | . 159 | .1333 | .3534 | .0235 | .4651 | ,0940 | .3774 | | | 801
78M
1.099
89 | TL
PPM
1.347
.019
1.014 | TI
PRM
.0145
.0013
5.740 | ZR
P PM
.1010
.0000
.0055 | | | | | 3 1
#2 | 540 | 1.343
1.836 | .0153
.0134 | .1010
.1010 | | | | page : Method: ICAP1 Sample Name: IDL's #4 Run Time: 05/14/91 15:48:37 Comment: 2nd QUARTER 1991 DAY 1 Mode: CONC Corr. Factor: 1 | Mode: UL | INC Corr. | Factor: | l. | | | | | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|--|--------------------------------------| | Elem
Units
Avge
SDev
XRSD | AL
PPM
.2037
.0113
5.526 | SB
FPM
.1943
.0183
9.424 | AS
PPM
.2560
.0153
3.765 | BA
PPM
.0141
.0000
.0000 | BE
PPM
.0063
.0000 | CD
FFM
.0 291
.0007
2.377 | GA
FFM
.1121
.0000
.0013 | | #1 | .1957 | .1814 | .2452 | .0141 | .0043 | .0284 | .1121 | | #2 | .2116 | .2072 | .2668 | .0141 | .0042 | .0274 | .1121 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | FPM | PFM | PPM | PPM | PPM | PFM | | Avge | .0234 | .0315 | .0245 | .1544 | .1579 | .3910 | .0212 | | SDav | .0015 | .0013 | .0019 | .044 | .0063 | .012 | .0007 | | WRSD | 4.296 | 4.049 | 7.250 | 2.920 | 3.976 | .3152 | 3.078 | | 计1. | .0246 | .0306 | .0852 | .1534 | .1624 | .3902 | .0208 | | 详证 | .025 | .0325 | .0279 | .1599 | .1535 | .3919 | .0217 | | Elem | NI | | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | PPM | PPM | ppm | PFM | PFM | | Avgæ | .1000 | 3.752 | .0217 | .0539 | .3077 | .0238 | .0306 | | SDev | .0052 | .034 | .0004 | .3397 | .0143 | .0015 | .0000 | | %RSD | 5.170 | .8979 | 1.716 | 629.8 | 5.310 | 5.198 | .0849 | | # i | . 1964 | 3.776 | .0232 | 1863 | .2962 | .0277 | .0305 | | #2 | . 1037 | 3.728 | .0236. | .2941 | .31 9 3 | .0278 | .0305 | | Elem | 3 | LI | F | M3 | SE | SR | 3102 | | Unite | PPM | PPM | FFM | FPM | PPM | FFM | PFM | | Avge | .0247 | .1415 | .2565 | .0265 | .5087 | .0945 | .8E97 | | SLev | .0044 | .0000 | .0633 | .0029 | .309 | .0005 | .0203 | | %RSD | 23.77 | .0000 | 24.67 | L0.85 | 6.071 | .3148 | 2.581 | | # 1. | .0222 | .1415 | .2118 | ,o245 | .4869 | 0943 | .9140 | | ### | .0312 | .1415 | .3012 | .o285 | .5306 | .0943 | .3750 | | Elem
Unite
Hige
Boev
Wilo | EM
2 PM
1.2.7
.017
.177 | TL
FPM
.911
.026
1.244 | TI
PPM
.0155
.0004
G.739 | ER
PPM
.1005
.0006
.3467 | | | | | # 1
E | 1.603
1.600 | 1.8 7 3
1.730 | .0152
.0158 | .1010
.1002 | | | | Method: ICAP1 Sample Name: IDL's # 5 Run Time: 05/14/91 15:49:57 Comment: 2nd QUARTER 1991 DAY 1 Mode: CONC Corr. Factor: 1 | Elem | AL | SB | AS | BA | BE | CD | CA | |---|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------|-------|---------------| | Units | PPM | PFM | PPM | FPM | PPM | PFM | FFM | | Avge | .2020 | .1659 | .2622 | .0141 | .0063 | .0249 | .1172 | | SDev | .0269 | .0072 | .0067 | .0000 | .0000 | .0013 | .0144 | | %RSD | 13.31 | 4.363 | 2.559 | .0000 | .3141 | 5.258 | 12.31 | | #1 | .1830 | .1607 | .2670 | .0141 | .0043 | .0258 | .1274 | | #2 | .2210 | .1710 | .2575 | .0141 | .0043 | .0240 | .1070 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PFM | PPM | PPM | PPM | PPM | PFM | PPM | | Avge | .0246 | .0343 | .0252 | .1543 | .1557 | .3773 | .203 | | SDav | .027 | .0051 | .0019 | .0025 | .0287 | .0255 | .007 | | %RSD | 11.93 | 14.94 | 7.683 | 1.695 | 18.41 | 6.750 | 3.230 | | 2# | .0247 | .03 79 | .0256 | .1562 | .1760 | .3953 | .0198 | | 2# | .0226 | .0306 | .0238 | .1525 | .1354 | .3593 | .0208 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FFM | PPM | PPM | PFM | ppm | PPM | FPM | | Avge | .1051 | 3.680 | .0219 | .3808 | .2916 | .0252 | .0363 | | SDev | .0019 | .438 | .0012 | 1.995 | .0218 | .0029 | .0008 | | %RSD | 1.832 | 11.90 | 5.295 | 524.0 | 7.473 | 11.48 | 2.524 | |) 44 | .1064 | 3.990 | .0227 | 1.792 | .3070 | .0272 | .0817 | | 82 | 037 | 3.371 | .0211 | -1.030 | .2762 | .0231 | .032 7 | | alem | 8 | LI | P | MO | SE | SR | 5108 | | Units | 3FM | PRM | FPM | PPM | PPM | PPM | 8PM | | Avgs | .0655 | .1357 | .2901 | .0285 | .4978 | .0935 | .8651 | | SDev | .0016 | .012 | .0475 | .0172 | .0074 | .0004 | .0262 | | XRSD | 6.879 | .8519 | 16.38 | 60.41 | 1.524 | .4217 | 3.029 | | #1 | .0247 | .1349 | .3238 | .0163 | .5032 | .0942 | .3884 | | # <u>2</u> | .0244 | .13 65 | .2545 | .0407 | .4925 | .0936 | .3465 | | Total
Santa
Ange
Tilev
Ange | SM
6FM
1.167
1.064
4.054 | TL
PPM
1.703
.031
1.486 | TI
PPM
.0158
.0009
5.332 | ER
PPM
.0998
.0027
2.748 | | | | | \$1
#2 | 1.612
1.522 | 1.925
1.881 | .0164
.0152 | .1018
.0 97 9 | | | | Method: ICAFi Sample Name: IDL's # 6 Operator: JM Run Time: 05/14/91 15:52:19 Comment: End QUARTER 1991 DAY 1 Mode: CCNC Corr. Factor: 1 | Elem
Units
Avge
SDev
%RSD | AL
PPM
.1470
.0180
10.78 | 3B
FPM
.1685
.0110
6.521 | AS
PPM
.2578
.0265
10.28 | 8A
PPM
.0141
.0000 | BE
PPM
.0043
.0000
.2352 | CD
FPM
.0249
.0012
4.912 | CA
PPM
.1121
.0000 | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------| | #1
#2 | .1797
.1543 | .1762 | .2390
.2765 | .0141 | .0043
.0043 | .0241
.0258 | .1121 | | Glem
Units
Avge
SDev
XRSD | CR
PPM
.0241
.0008
3.108 | CO
FPM
.0343
.0026
7.480 | CU
PFM
.0238
.0019
8.089 | FE
PPM
.1571
.0039
2.494 | PB
PPM
.1737
.0094
5.430 | MG
FFM
.4090
.0267
6.517 | MN
PPM
.0208
.0000 | | 体1 | .0235 | .0361 | .0252 | .1599 | .1670 | .3902 | .0208 | | 第四 | .0245 | .0325 | .0225 | .1543 | .1803 | .4279 | | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | FFM | PPM | ppm | PPM | PPM | | Avge | .1049 | 3.645 | .0224 | .2622 | .3128 | .0271 | .0312 | | SDev | .0020 | .219 | .0004 | .2135 | .0212 | .0011 | .0008 | | %RSD | 1.829 | 6.008 | 1.747 | 81.44 | 6.792 | 4.193 | 2.552 | | 9 % | .1054 | 3.490 | .0227 | .1112 | .2977 | .0279 | .0317 | | #亞 | .1053 | 3.799 | .0222 | | .3278 . | .0263 | .0306 | | Elem | 3 | LI | P | MO | SE | SR | SiO2 | | Units | FPM | PPM | PPM | PFM | PPM | FPM | PPM | | Avge | .0290 | .1349 | .2192 | .0305 | .4761 | .0947 | .8846 | | BDev | .0064 | .0023 | .0950 | .0029 | .0077 | .0003 | .0073 | | SRED | EZ.04 | 1.714 | 43.34 | 9.403 | 1.623 | .3137 | .8230 | | # . | .0835 | .1333 | .2864 | . 285 | .4816 | .0949 | .3794 | | 4 <u>8</u> | 0245 | .1365 | .1520 | . 0326 | .4706 | .0945 | .3897 | | Eltem
Loinge
Avge
HDev
 | 3N
8FM
1.349
.038
5.439 | TL
FPM
1.875
.007
.3754 | TI
PPM
.0146
.0000
.0042 | ZR
FPM
.1017
.0011
i.071 | | | | | 58
64 | 0.574
1.5 22 | 1.880
1.870 | .0146
.0146 | .1010
.1025 | | | | page 1 Method: ICAP1 Sample Name: IDL's # 7 Run Time: 05/14/91 15:53:45 Run Time: 05/14/91 15:53:45 Comment: End QUARTER 1991 DAY 1 Mode: CONC Corr. Factor: 1 | Stant | | | | | | | | | |---|-----------------------|-----------------------------|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | #2 .25 .1917 .2634 .0141 .0063 .0267 .1121 Elem CR CO CU FE PB MG MN Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | Units
Avge
SDev | PPM
.2068
.0611 | PPM
.1839
.0110 | PPM
.2606
.0040 | FPM
.0141
.0000 | PPM
.0063
.0000 | PPM
.0272
.0007 | FPM
.1096
.0036 | | Units PPM PPM PPM PPM PPM PPM PPM PPM Avga .0262 .0361 .0231 .1511 .1648 .3773 .0203 SDev .0022 .0000 .0010 .0007 .0348 .0152 .0007 KRSC 8.475 .0110 4.159 .4327 21.14 4.824 3.199 #1 .0246 .0361 .0225 .1506 .1401 .3644 .0198 #2 .0278 .0361 .0235 .1515 .1894 .3902 .0208 Elem NI K AG NaHi NaLc V ZN Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | | | | | | | | | | #2 .0278 .0361 .0238 .1515 .1894 .3902 .0208 Elem NI K AG NaHi NaLo V ZN Units PFM PFM PFM PFM PFM PPM PPM PPM PPM PPM | Units
Avge
SDev | PFM
.0262
.022 | PPM
.0361
.0000 | PPM
.0231
.0010 | PFM
.1511
.0007 | PPM
.1648
.0348 | PPM
.3773
.0182 | PPM
.0203
.0007 | | Units FFM PFM PFM PFM PFM PFM PPM PFM PPM PPM | | | | | | | | | | #2 .1037 3.919 .0211 .7736 .3108 .0280 .0306 Elem B LI P MD SE SR S102 Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP |
Units
Avge
SDev | FFM
.0987
.0071 | PPM
3.716
.286 | FFM
.0205
.0008 | PPM
.2658
.7182 | ppm
.3066
.0060 | FFM
.0261
.0026 | PPM
.0295
.0016 | | Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | | | | | | | | | | #8 .0334 .1284 .4359 .0285 .4815 .0948 .8897 Elsm SN TL TI ZR Units PFM PPM PPM Avge 1.522 1.831 .0146 .0994 SDev .058 .071 .0009 .0022 MRSD 8.502 8.856 3.795 2.197 #1 1.495 1.781 .0140 .0979 | Units
Avge
SDev | PPM
.0312
.0032 | PPM
.1300
.0023 | FFM
.3351
.1426 | PPM
.0285
.000 | PPM
.4488
.0462 | PPM
.0938
.0006 | PPM
.8733
.0233 | | Units PPM PPM PPM PPM Avge 1.322 1.831 .0146 .0994 BDev .058 .071 .0009 .0022 MRSD 8.502 8.856 3.795 2.197 #1 1.495 1.791 .0140 .0979 | | | | | | | | | | | Units
Avge
3Dev | PPM
1.3 22
.35 | P PM
1.831
.071 | PPM
.0146
.0009 | PPM
.0994
.0022 | | | | | | | | | | | | | | Method: ICAP1 Sample Name: CCV-5 Run Time: 05/14/91 15:56:17 Comment: SOLUTION 051491 Mode: CONC Corr. Factor: 1 | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|-------|-------|-------| | Units | PPM | PPM | PPM | PPM | PPM | FPM | FPM | | Avge | 1.012 | 2.086 | 2.107 | .9940 | 1.014 | 1.031 | 53.09 | | SDev | .046 | .007 | .038 | .0052 | .013 | .012 | .54 | | %RSD | 4.515 | .3476 | 1.794 | .5241 | 1.257 | 1.140 | 1.019 | | #1 | .9794 | 2.091 | 2.133 | .9903 | 1.005 | 1.023 | 52.70 | | #2 | 1.044 | 2.081 | 2.080 | .9977 | 1.023 | 1.039 | 53.47 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | FPM | PPM | FPM | PPM | PPM | FPM | PPM | | Avge | 1.002 | 1.044 | .9980 | 1.054 | 1.053 | 26.32 | 1.005 | | SDev | .010 | .010 | .0048 | .004 | .022 | .21 | .008 | | %RSD | .9611 | .9779 | .4828 | .3732 | 2.084 | .7918 | .8428 | | #1 | .9952 | 1.036 | .9946 | 1.051 | 1.048 | 26.17 | .9988 | | #2 | 1.009 | 1.051 | 1.001 | 1.057 | 1.037 | 26.46 | 1.011 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | PPM | PPM | ppm | PPM | PFM | | Avge | 1.010 | 50.48 | .9990 | 52.73 | 46.30 | 1.028 | 2.079 | | SDev | .005 | .07 | .0054 | .28 | .27 | .010 | .011 | | %RSD | .5113 | .1330 | .5413 | .5284 | .5741 | 1.010 | .5358 | | #1 | 1.006 | 50.43 | .9951 | 52.53 | 46.11 | 1.021 | 2.071 | | #2 | 1.013 | 50.73 | 1.003 | 52.92 | 46.49 | 1.035 | 2.087 | | Elem | B | LI | P | MO | SE | 3R | S102 | | Units | PPM | FFM | FFM | FPM | PPM | PPM | PPM | | Avge | .9744 | .9074 | 26.56 | 1.055 | 1.078 | .9982 | .1854 | | SDev | .0080 | .0035 | .07 | .003 | .038 | .055 | .0163 | | KRSD | .8252 | .3822 | .2581 | .2717 | 3.501 | .5505 | 3.775 | | #1 | .9687 | .9052 | 26.51 | 1.057 | 1.125 | .9948 | .1729 | | #経 | .9801 | .9101 | 26.61 | 1.053 | 1.071 | 1.002 | .1969 | | Elem
Units
Avge
Scov
4RSC | 8N
FFM
5.251
.019
.8450 | TL
PPM
10.03
.04
.4116 | TI
FPM
1.008
.009
.8494 | ZR
PPM
.9230
.0046
.7109 | | | | | #1
#2 | 5.238
3.245 | 10.01
10.06 | 1.002
1.014 | .9184
.9277 | | | | page : Method: ICAP1 Sample Name: CCV-5 (SiO2) Operator: JM Run Time: 05/14/91 15:59:11 Comment: SOLUTION 050291 | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Units | PPM | PPM | PPM | FPM | PPM | PPM | FPM | | Avge | .0040 | .0232 | .0077 | .0071 | .0030 | 0005 | .1326 | | SDev | .0460 | .0183 | .0398 | .0004 | .0010 | .0027 | .0505 | | %RSD | 1137. | 78.96 | 513.6 | 6.149 | 32.48 | -559.9 | 38.07 | | #1 | .0365 | .0103 | 0204 | .0074 | .0037 | .0014 | .1683 | | #2 | 0285 | .0362 | .0359 | .0068 | .0023 | 0024 | .0969 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PFM | FPM | PPM | PPM | FPM | | Avge | .0024 | .0018 | .0027 | .0194 | 0066 | .0663 | .0212 | | SDev | .0000 | .0000 | .0010 | .0026 | .0096 | .0302 | .0007 | | %RSD | .5354 | .1262 | 35.21 | 13.45 | -144.2 | 45.27 | 3.081 | | #1 | .0026 | .0018 | .0034 | .0212 | 0134 | .0882 | .0217 | | #2 | .0025 | .0018 | .0020 | .0176 | .0001 | .0454 | .0207 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | PPM | FPM | PPM | ppm | PPM | PFM | | Avge | 0005 | 0357 | .0043 | .0128 | .0505 | 0005 | .0085 | | SDev | .0065 | .0337 | .0007 | .4745 | .0163 | .0008 | .0032 | | %RSD | -1219. | -94.28 | 17.10 | 3714. | 32.39 | -144.4 | 37.97 | | #1 | 00 51 | 0119 | .0048 | 3228 | .0420 | 0011 | .0107 | | #2 | .0040 | 0596 | .0038 | .3483 | .0389 | .0000 | .0062 | | Slem
Units
Avge
SDev
XRSD | 3
AFM
.0014
.0018
128.5 | LI
PPM
.0025
.0023
94.28 | PFM
.0185
.0527
284.9 | MO
FPM
.0061
.0086
141.3 | 3E
FPM
.0329
.0384
116.6 | SR
PPM
.0027
.0007
35.36 | 3:02
APM
21.45
.04
.1957 | | #1
#8 | .0024 | .0041
.0008 | .0558
0188 | .0122 | .0058
.0601 | .0033
.0020 | 21.42
21.48 | | Elem
Units
Avge
SDev
XRSD | SN
PPM
.0315
.0127
+0.27 | TL
PPM
.0940
.0160
16.96 | TI
PPM
.0021
.0000
.1635 | ZR
PPM
.0119
.0114
95.74 | | | | | 91
#8 | .0404
.02 5 | .0828
.1053 | .0021
.0021 | .0200
.0039 | | · | | Method: ICAP1 Sample Name: CCB-5 Operator: JM Run Time: 05/14/91 16:00:54 Comment: | Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | Mode: Co | 140 0011. | Letter 1 | | | | | | |---|-------------------------------|--------------------------------|--|--------------------------------|--|--------------------------------|---------------------------------|---| | ### .0000 .02580233 .0000 .00100004 . Elem CR CD CU FE PB MG MG M Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | Units
Avge
SDev | PPM
.0111
.0158 | PPM
.0129
.0183 | PPM
0311
.0110 | PPM
.0000
.0000 | PPM
.0010
.0000 | PPM
0008
.0007 | CA
PPM
.0102
.0000
.0423 | | Units PPM PFM PFM PFM PPM PPM PPM PPM PPM PPM | | | | | | | | .0102
.0102 | | #20037 .0054 .0034 .001801320043 - Elem NI K AG NaHi NaLo V Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | Units
Avge
SDev | PPM
0026
.0015 | PPM
.0018
.0051 | PPM
.0000
.005 | PPM
0014
.0046
-329.9 | PPM
0022
.0157
-719.0 | PPM
.0000
.006
-18370. | MN
FPM
.0000
.001
-430600 | | Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | | | | | | | | 0005
.0005 | | Elem B LI P MO SE SR SR SH Avge00230016 .0075 .00200218 .0003 SDev .0032 .0058 .0478 .0086 .0153 .0001 ST | Units
Avge
SDev
%RSD | FPM
0069
.0038
-55.39 | PPM
1310
.0337
-25.71
1072 | PPM
.0011
.0023
213.3 | PPM
4529
.2124
-46.70
6030 | ppm
0786
.0016
-2.080 | PPM
0008
.0019
-228.1 | ZN
PPM
.0017
.0000
1.952
.0017 | | #20045 .00850843 .00810324 .0008 Elem SN TL TI ZR Units PPM PPM PPM Avgs .0135 .0857 .00040008 3Dev .0000 .0549 .0004 .0000 0:48D .1041 58.02 70.42 -1.202 #1 .0135 .0434 .00030008 | Elem
Units
Avge
SDev | B
FPM
0023
.032 | LI
PPM
0014
.0058 | P
PPM
.0075
.0478 | MO
PPM
.020
.086 | SE
PPM
0218
.0153 | GR
FPM
.0003
.0001 | .002
PPM
.0890
.0405
45.55 | | Units PPM PPM PPM PPM Avgs .0135 .0857 .00060008 3Dev .0000 .0569 .0004 .0000 5000 .1041 58.02 70.62 -1.202 #1 .0135 .0434 .00030008 | | | · · | | | | | .1177
.0603 | | | Units
Avçe
SDev | PPM
.0135
.0000 | PPM
.0857
.0569 | PPM
.0006
.0004 | P PM
0005
.0000 | | | | | • | | | | | | | | | Method: ICAP1 Sample Name: ICS Operator: JM Run Time: 05/14/91 16:05:57 Comment: INT-A1 & INT-B1 (SFEX) Mode: CONC Corr. Factor: 1 | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|--|--|---|--|----------------|-------|--------| | Units | FPM | PPM | PPM | FPM | PPM | PPM | PPM | | Avge | 494.0 | .0692 | 3681 | .4685 | .4795 | .9495 | 507.9 | | SDev | 2.4 | .0403 | .0102 | .0009 | .0037 | .0021 | 4.2 | | %RSD | .4910 | 58.29 | -2.767 | .1853 | .7657 | .2174 | .8179 | | #1 | 492.2 | .0407 | 3609 | .4678 | .4769 | .9480 | 504.9 | | #2 | 495.7 | .0977 | 3753 | .4691 | .4821 | .9510 | 510.8 | | Elem | CR | CD | CU | FE | PB | MG | MN | | Units | FPM | PFM | PPM | FFM | PPM | PFM | PPM | | Avge | .4631 | .476E | .4481 | 186.4 | 1.002 | 510.0 | .4650 | | SDev | .037 | .0025 | .0035 | 1.2 | .020 | 8.1 | .0008 | | %RSD | .8077 | .5155 | .3533 | .6697 | 2.030 | .4204 | .1816 | | #1 | .4657 | .4750 | .4454 | 185.3 | . 987 4 | 508.5 | .4644 | | #2 | .4605 | .4785 | .4508 | 187.2 | 1.016 | 511.5 | .4656 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | PPM | Avge | .7003 | 1072 | .9412 | -1.766 | .2685 | .4816 | .9263 | | SDev | .0058 | .1011 | .0051 | .247 | .0588 | .0017 | .0037 | | %RSD | .6481 | -94.28 | .5404 | -13.99 | 21.91 | .3578 | /.4000 | | #1 | .8962 | 0357 | .9376 | -1.941 | .3101 | .4804 | .9237 | | #2 | .9044 | 1787 | .9447 | -1.592 | .2269 | .4828 | .9269 | | Elem | B | LI | P | MO | SE | SR | SiO2 | | Urits | PPM | PPM | FPM | PPM | PPM |
PPM | PPM | | Avge | 0461 | 0041 | .0284 | 0542 | .2717 | .0146 | .2452 | | BDev | .0062 | .0023 | .1330 | .0031 | .03 57 | .0011 | .0115 | | MASD | -13.36 | -56.57 | 468.0 | -8.455 | 13.14 | 7.819 | 4.688 | | #1 | 0504 | 0025 | 0636 | 0384 | .2465 | .0154 | .2371 | | ## | 0417 | 0057 | .1225 | 0340 | .2969 | .0138 | .2534 | | Elem
Unito
Avge
EDev
2085 | SN
PPM
.0544
.0243
TO.60
.0172
.0516 | TL
PPM
.E395
.0115
5.041
.2213
.2377 | 71
PPM
0001
.0007
-618.2
.0004
0006 | ZR
PPM
.0035
.0017
97.31
.0047
.0023 | | | | Method: ICAF1 Sample Name: CCV-5 Operator: JM Run Time: 05/14/91 16:13:20 Comment: SOLUTION 051491 Mode: CONC Corr. Factor: 1 | Elem | AL | SB | AS | BA | BE | CD | CA | |---------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-------------------------------------| | Units | PPM | PPM | PPM | FFM | FPM | PFM | FFM | | Avge | 1.056 | 2.089 | 2.162 | .9851 | 1.002 | 1.029 | 52.40 | | SDev | .048 | .004 | .019 | .0004 | .016 | .010 | .63 | | %RSD | 4.528 | .1714 | 8901 | .0441 | 1.604 | .9442 | 1.193 | | #1 | 1.090 | 2.086 | 2.176 | .7854 | 1.013 | 1.035 | 53.04 | | #2 | 1.022 | 2.091 | 2.149 | .9848 | .9905 | 1.022 | 52.15 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PFM | PFM | PFM | PPM | PPM | | Avge | .9942 | 1.043 | .9932 | 1.094 | 1.044 | 26.30 | 1.001 | | SDev | .0089 | .017 | .0000 | .026 | .035 | .15 | .010 | | %RSD | .3955 | 1.593 | .0002 | 2.389 | 3.382 | .5852 | .9769 | | #1 | 1.001 | 1.054 | .9932 | 1.112 | 1.069 | 26.40 | 1.008 | | #2 | .9879 | 1.031 | .9932 | | 1.019 | 26.19 | .9942 | | Elem
Units
Avge
SDev
%RSD | NI
PPM
1.011
.009
.9000 | K
PPM
50.35
.03 | AG
PPM
.9982
.0050
.5042 | NaHi
PPM
50.69
.88
1.745 | NaLo
ppm
46.02
.13
.2900 | V
FPM
1.019
.011
1.089 | ZN
FPM
2.092
.026
1.221 | | #1 | 1.017 | 50.32 | 1.002 | 51.32 | 46.12 | 1.027 | 2.110 | | #2 | | 50.37 | .9946 | 50.07 | 45.93 | 1.011 | 2.074 | | Elem | 8 | LI | P | MO | SE | SR | 8102 | | Units | FPM | PPM | FFM | PFM | PPM | PPM | PPM | | Avge | .9641 | .9092 | 26.91 | 1.067 | 1.069 | 1.004 | .1820 | | SDev | .0225 | .0012 | .05 | .009 | .019 | .002 | .0188 | | XRSD | E.333 | .1272 | .1763 | .8082 | 1.766 | .2119 | 7.314 | | #1 | .9500 | .9101 | 2 5. 87 | 1.073 | 1.055 | 1.00a | .1914 | | #2 | .9482 | .9084 | 2 6. 94 | 1.061 | 1.082 | 1.003 | .1786 | | Elem
Units
Augo
SDev
WRED | 5N
9PM
5.4.7
.013
.2354 | TL
FPM
10.02
.02
.1784 | TI
PPM
1.003
.005
.4714 | ZR
PPM
.3914
.0044
.4904 | | | | | 株1
株2 | 5.42 6
5.408 | 10.01
10.03 | 1.004
.9 9 95 | .9945
.8883 | | | | page 1 Method: ICAF1 Sample Name: CCB-5 Run Time: 05/14/91 16:15:40 Comment: | | | ractor: 1 | | | | | | |---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------|--------|--------| | Elem | AL | SB | AS | BA | BE | CD | CA | | Units | FPM | PPM | PPM | PPM | PPM | PPM | PFM | | Avge | 0254 | .0103 | .0063 | .0000 | .0010 | 0005 | .0204 | | SDev | .0181 | .0000 | .0109 | .0000 | .0000 | .0000 | .0072 | | %RSD | -71.21 | .1356 | 171.8 | .0000 | 1.128 | -2.911 | 35.36 | | #1 | 0382 | .0103 | 0014 | .0000 | .0010 | 0005 | .0153 | | #2 | 0126 | .0103 | .0140 | .0000 | .0010 | 0005 | .0255 | | Elem | CR | CO | CU | FE | PB | MG | MN | | Units | PPM | PPM | PPM | PPM | PPM | PPM | FFM | | Avge | 0031 | .0000 | 0007 | .0365 | 0022 | .0145 | 0009 | | SDev | .0007 | .0026 | .0000 | .033 | .0096 | .0315 | .0007 | | %RSD | -23.63 | 243700. | 0439 | 8.951 | -432.4 | 216.7 | -71.70 | | #1 | 0024 | 0018 | 0007 | .0388 | 0090 | 0077 | 0004 | | #2 | 0037 | .0018 | 0007 | .0342 | .0046 | .0368 | 0014 | | Elem | NI | K | AG | NaHi | NaLo | V | ZN | | Units | FPM | PPM | PPM | PPM | ppm | PPM | PPM | | Avge | 0060 | 3811 | .0005 | 1817 | 0543 | .0012 | .0006 | | SDev | .0013 | .3874 | .0000 | .4270 | .0294 | .0013 | .0016 | | %RSD | -21.99 | -101.6 | .8186 | -235.0 | -54.16 | 111.1 | 273.9 | | #1 | 0051 | 6551 | .000 5 | 4836 | 0751 | .0003 | .0017 | | #2 | 0069 | 1072 | .0005 | .1203 | 0335 | .0021 | 0003 | | Elem | 8 | LI | P | MO | SE | SR | 8102 | | Units | -FM | PPM | PPM | PPM | PPM | PPM | 9FM | | Avge | .0013 | 0008 | 0971 | .0041 | .0485 | .0002 | .0011 | | SDev | .0048 | .0023 | .0475 | .0000 | .0038 | .0001 | .0000 | | KRSD | 359.9 | -282.8 | -48.70 | .0171 | 5.574 | 23.57 | 2.342 | | 体1 | .0047 | 0025 | 0636 | .0041 | .0658 | 2000. | .0011 | | 件已 | 0021 | .0008 | 1307 | .0041 | .0712 | S000. | .0011 | | Elem
Unite
Avge
SDev
4RSD | 3N
PPM
.0180
.0064
35.45 | TL
PPM
.0198
.0252
130.2 | TI
PPM
0006
.0004
-71.01 | ZR
PPM
.0019
.0005
8 8. 37 | | | | | #1
#2 | .0825
.0135 | .0015
.0371 | 0003
000 9 | .0015
.0023 | | | | ## METALS PREPARATION LOG MATRIX: (CIRCLE ONE) NОТЕВООК # <u>16</u> AQUEOUS SOLIDYWASTE NON-AQUEOUS LIQUID PAGE# 075 | DATE OF PR | | |------------|---------| | QC LOT # _ | 1505916 | | QC RUN # _ | 150591G | ANALYST A Hamenan SBARNUE 1 | Sample
ID | PH 2
(circle one) | Method
(circle one) | initial
wt (g) | Final
wt (g) | Filtered (circle one) R'ced in Manal by | | COMMENTS | | |--------------|----------------------|------------------------|-------------------|-----------------|---|-------------|------------|-------| | DCS 1 | N/A | ICP | 1,00 | [000 | Y N | - | | | | DCS 2 | N/A | IÇZ | | | Y N | | | | | Prep Blank | N/A | /ICP | | | y N | ÷ | | | | DCS 1 | N/A | FAA | | | Y N | | | | | DCS 2 | N/A | FAA | | | Y N | | | | | Prep Blank | N/A | FAA | | | Y N | <u> </u> | PARA | RANCE | | 13037,2 | Y N | ICP FAA | | | Y N | 1 | White Fine | | | M52 | Y N | ICP FAA | | 11. | Y N | | | | | 012 | Y N | ICP FAA | 1 | P | Y N | \i' | 4 4 | | | | Y N | ICP FAA | | \ | Y N | | poloce | nfter | | | Y N | ICP FAA | <u> </u> | | Y N | | | | | | Y N | ICP FAT | - | | Y N | | | | | | Y N | ICP FAA | | | YN | 4 | | | | | Y N | ICP FAA | <u> </u> | | Y N | <u> </u> | | | | | Y N | ICP FAA | <u> </u> | | Y_N | 4 | | | | | Y N | ICP FA | <u> </u> | | Y | Ц | | | | | Y N | ICP FA | \ | | Y N | <u> </u> | | | | | Y N | ICP FA | A . | | <u> </u> | <u> </u> | | | | | Y N | ICP FA | A | | Y_N | | | ` | | | Y N | ICP FA | A | | Y N | <u> </u> | | | | | Y N | ICP FA. | A · | | YN | 4 | | | | | Y N | ICP FA | A | | Y1 | <u> </u> | | | | | Y N | ICP FA | Α | | Y1 | ч | | | | | Y N | ICP FA | A | | _\ | <u> </u> | | | | | Y N | I ICP FA | Α | | _ Y | V | | | | | Y N | I ICP FA | A | | Y | Ν | | | DATE RECEIVED IN MANAL LAB REVIEWED AND UNDERSTOOD B ANALYST SIGNATURE DATE SIGNATURE